IDMS File Access Guide

Release 8.1.3
November 2013

METASUITE

IKAN Solutions N.V.
Kardinaal Mercierplein 2
B-2800 Mechelen
BELGIUM

Copyright © 2013, IKAN Solutions N.V.

No part of this document may be reproduced or transmitted in any form or by any
means, electronically or mechanically, for any purpose, without the express written
permission of IKAN Solutions N.V.

MetaSuite, MetaStore Manager, MetaMap Manager and Generator Manager are
trademarks of IKAN Solutions N.V.
IDMS is a trademark of Computer Associates (CA Inc).

Table of Contents

Chapter 1 - About This Manual........ccccceiiiimiiiiiiiiiiiiiiiiiiirnrcrrreeereeeeeeeeneees 1
L B o =Y ¢ Yo [0 1 =T TP TP O PO PP PP PPPPPPPPRRRROt 1
1.2, Related PUBIICATIONS ..couiiiiiiiiieiteeee ettt ettt et s et e bt ea bt e bt e s bt e e bt e sate e bt e s aneenbeesateens 1
Chapter 2 - MetaSuite File Access OVErvieW........cciceueerrieeeiirieneierienncreennecenennnens 3
Chapter 3 - CA-IDMS Concepts and Terminologycccceeuueiiiriiinnnicniicennnnnnnn. 4
3uT. OVEIVIEW ..ttt ettt ettt ettt e ettt ettt e bttt et e san et e et et e a b et e et e e et e e be e eaen e e e bn e e e brae e sen et eannaeeseneeenen 4
3.2, CA-IDMS data SErUCTUMES ..c...eiiiieiieiie ettt sttt ettt e b e st b e et e e s bt e et e esb et e bt e sbb e e bt e sab e e bt e sateenbeesaeeeaees 4
3.3 RECOMAS ettt et et sh e bt sa e bttt e be e eh bt e bt e et e bt et e e she e et e e nbeeebeenaes 4
LOCATION IMOAES ... e ettt ettt ettt et e e et e et et e et et e st e et e sane s 5
INAEXES. ..ttt ettt ettt ettt 5
Data Structure DIaQram...........cocuiiiiiiiiiiiiiiiiii e e 5
SBES e et a ettt et et et e e ne e et e e st e s e esneeenans 6
SO LINKAGE ettt et ettt et ettt ettt ettt st 7
SO OFUON .ttt ettt sttt ettt et ettt ettt et s et et e sttt 7
Dat@ STUCTUIES ...coeeeeiiieee ettt ettt et e e ettt e et e et e e e et e e et e e s s e eeennnneeas 9
HIEIArChiCal STIUCTUIE «...c.veeiiieeieeeeeee ettt ettt ettt et ettt et 9
INETWOIK STIUCTUIE ...ttt ettt et ettt ettt e e e st et e sat e et e s ateeateenaeeeteens 10
34, AcCCESSING INTOIMATION Leiiiiitiiitiet ettt ettt e b e st e s bt e a bt e s bt e et e e bt e e bt enbte e bt e sbeeeabeesaeeens 12
Integrated Data Dictionary (IDD)..........cc.cocueeeiimiieniinieeeet ettt ettt 12
Yol o =T o - H U OSSOSO P PR SRR PRSP 12
Y] oX-Tol o 1Yo T OSSP OP PRSP 12
RUN-URITcceiiiiieeeeeeee ettt ettt ettt e sttt e e sttt e e ettt e e sttt e s et e e s nanneeens 12
Path...eeeeeeee ettt et ettt et ettt e s e ettt et eae e 12
CUITEINCIES .ttt ettt et ettt e ettt e s ettt e ettt e s ettt e e s ettt e e st eeseitaeeeenaansneeens 13
Chapter 4 - Using MetaSuite with a CA-IDMS database.........ccccceevvuerriennnnnnene. 14
4.1. MetaSuite and CA-IDMS TerminNOlOgYueeiuiieiiiieeeiie ettt ettt ettt e ettt e ettt e e et ee st e e sbeeesbeeeesebeeesateeeenseeennses 14
FHIE ettt ettt h e ettt et ettt ettt et e eat e et e e ateete e e e eaeens 15
RECOIT .ttt ettt ettt et st ettt ettt ettt ettt et 15
=] o RSP UURPPURRUPII 15
INAEX ettt ettt ettt ettt ettt ettt 15
LK ettt a et a e h e ettt t e et ettt et e eat e et e e ateete e e e eaeens 15
Data Definition FACIIIHIES.coueieeie ettt ettt ettt et sttt ettt ae e 15
4.2, Programming OVEIVIEW.cccuuiiiiiiiiiiiiiiiii ettt et s et s be e e s eaa e s aa e e snae e e 15

CA-IDMS SOUICEFIIE PALA.....cceeeieeeiieeeiiee ettt ettt e e e et e e te e et e e snsaeesnseeesasseesnsesasaseeassseannsseenanseenns 16

TABLE OF CONTENTS |

Extended MetaSuUite FACIlITIESeeeeeeeeeeeeeeeeeeee e ettt e ettt e e e et e e e et eeeeetaseaeeeeaasenaan 16

WHat the PrOgram S@ES.......ouuuii ettt ettt e ettt e ettt e et e et e e s et e s asate e e aateeeatteessteeanseeesasneesanes 16

Y VL] o R B 7=] o Y- -1 =Y-J RSSO RUUPRRPRR 16
Chapter 5 - Defining a CA-IDMS Database.......ccccoeeeeeeeiiiiiiiiiiiiinnenniniiiiinnnecenees 17
L B O Y=Y V=1 ST UPR USSP 17
5.2. Defining Databases ManuUallyc..cocciieiiiiiiiiiiiiee ettt sttt e ettt ettt s 17
COMIMANGS......oveiie e e et e e et e e e ettt e e ettt e e e et st e e e eaaase e s e e ettseeaeeeatsseseeeeaesssseeassssaaesantsseseeanssrenaan 18
MetaSuite Commands that Define CA-IDMS Data Structures........ccceeecveeeeieeecieeeeiie e 18

L T | USSR UUPPUUUURRRRRNt 18
e 0= | 18
FIlE-NAMIE ..ottt ettt a e e e e e e et e ———————tataa e e e e e e e et —————ataaaaeeeaaaaans 18
SCREMA-NIAME ...ttt e ettt e e ettt e e e ettt e e e ettt e e e e et et e e e ettt e e e e et ae e ettt aaeaettetaeeenraaaeeantres 18
SCREIMA-VEISION ..ottt e e e e e e e et ettt e e e e e e e e et ettt et e e e e e e e e e e e e ——raraaaaaans 18
SUBSCREIMA-NAIME ..ottt e et e e e ettt e e e e ettt e e e et a e e e e eta e e e e e e tteta e e e traeaaeennees 19
BUSIN@SS-TUIE ...ttt et ettt e e e e e e e e ettt e e e e e e e e e e ettt e aaaaaeeeaaaeans 19

L3z Taa]) =SSP 19

5.4, RECORD ..ottt ettt e e ettt e e e ettt e e e e atbeeeeaeattbeeee e staaaaeeaassaeeeeassbaeeeeantsaaeeeaansrbaeeeanntbaeeeeanrsaaeeeanrraeaenn 19
e o 0= 1 P 19
(0T 1= T OSSPSR PSP UPPPPPUPPPRPN 19
RECOIA-NAIME ..ottt e et e e ettt e e e ettt e e e e ettt e e e e e ette e e e e etas e e e e eetsseseeessasenaan 20

| =R o T o o= RSP 20
IMIAXIMUIMAT@COIT-SIZE ..ottt e ettt e e et e e e et e e e et e aeeeetas e e e e eetsseaeeeassenaan 20

Ry el e T =) 1] Lo SO 20

YN =Y B o T- T o[- 3SR UUUPUPUPURUPRINS 20
BUSINESS-TUI ...ttt e et e e et e e ettt e e e ettt e e e e assaesaeeasssasaeeaanssasaesansssesaesanssasaenansssenaas 20
3z Taa]) =3P SR O RUUPSSPR 20

D . INDEX ettt ettt e e et e e e e et t——eeeeettteaeeaett—taeeaattteeeeaattteaeeaatetteeeaaittteeeeaatteeeeaaitbreaeeanrrreaaean 21
e T4 o T- | SR PUPPRRRR 21
USBGE .. e 22

oo L= L= o o F-To o =SOSR 22
INAEX-FIEIA-NAIME........eeiieeiee ettt e et e e ettt e e ettt e e e e et e e e e ettt e e e e eetaneaeeeeaarenaan 22

L Taa] o)=Y PSSRSO 22

LN T I 1 N1 S U USSP USUUUUUPUPPURRRRt 22
e o 0= | 22
USBQGIE ... 23
LINK-NAIMIE ..o ettt e e ettt e e et e e e ettt e e e ettt e e e e ettt e e et ba e e e e ettt e e e e atabeaeeaatraeaeeaarraaan 23
OWRNEI-TECOIT ...ttt e e e e et ettt e e e e e e e e e e e ettt e e e e e e e e eeeeeeetsssesaaaaaaaeeeeannsans 23
IMEIMBEI-TECOIT ... e ettt e et e ettt e e ettt e e e e ettt e e e e ataa e e e e eeaasesaeeasaseseeseassesseeassseaaan 23
OPTIONAL. ...ttt ettt e ettt e e e et te e e e e ettt e e e e e et aee e e e s eat e e e e e e e sataeeeessestaeeeeessastaaeeaeees 23

Lz Taa]) L= USSR 23

T N ol 1 =1 LU OO UPUU PP 24
e a0 F- | P 24
(0T 1= T TS USSP PPO S UPPPPPPPPPPN 24

TABLE OF CONTENTS |

Chapter 6 - Programming With MetaSuite File-Access (IDMS)cccuuu..... 26
6.1, OVEIVIEW ...ttt ettt ettt ettt ettt e sttt et e ettt e st e e e bttt e et et eeb et e et et e s abe e e eabe e e eabnee sttt e eabbeeenareeenneeeneneean 26
6.2. Programming CoONSIAEIETIONScecuuiiiiiieeeiieeeiite ettt e et ettt e ettt e s bt e e ettt eessteeeebeeesnbteesnteesnsteesasteeennseesanseeesnseean 26
ACCESSING ThE AATADASEc..eeiieeie et ettt ettt et ettt et s et et e st e et e et e aee e 26
ProCeSSING SEQUENCE. ...ttt ettt e e ettt e e ettt e e e ettt e e ettt e e e aaaee e s 27
NaVIgating the Dat@basecoiueeuieiie ettt ettt ettt sttt e et ettt et esat e et e sate et e s e eaeens 27
Program COMMEANUSocuuee ettt et et e et e et e et e e st e e e tte e st e e s steassteesnsteesanseeans 27
EFficiency CONSIAEIATIONSc..eeuverieieeiieiieitee ettt ettt ettt ettt et sttt sttt e 27

6.3, SOUICEFIIE .ottt ettt e h et st e s bt et esht e bt e bt s et e e b et e bt e nb bt e bt e sbe e e beesaneen 28
SOUICEFIIE-NAIME ... ettt ettt ettt e ettt ettt e et e e eate e s ate e eteesaeeenaaeas 28

PrOTIX ettt ettt ettt et a ettt et at e et e sttt e te et 28
SCREMA INGIME.c..iiiieee ettt et ettt ettt ettt e ettt ettt e et e e eat e e s ate e emtte e eaeeeaneas 29
VBISION INUIMBET ...ttt ettt ettt st ettt st ettt et sat e et s e et e s e eteens 29
SUBSCREME INGMI@ ...ttt ettt ettt st ettt ettt ettt e st enaees 29
PATH. < ettt ettt et e e ettt h e bt h et et et e et e e et ettt et e eut e et e et e eteeeneeteen 29
Identifying the Entry Record and Its ACCess TECANIQUEccvvecueeeiieiieeiiese ettt tee e ae e 30
METAMAEPD COITESPONUEINCEevveeeeeieeeiiee ettt et ettt e et e et e e ettt e e ttaeeabaeesssasennsssesssesasnssaennssassnsseennnseeans 30
Identifying SUDOIAINAtE RECOITSveiuieeiieeiie ettt ettt te e tte et e sttt e st e ssteestesateeaseessseeseenssesseans 30
METAMAEPD COTESPONUEINCEcc.evveeeeviieeiiee ettt et ettt ettt e et e e et e e ettt e e staeeabesenasaeesnsssesssesasnssaesnsseannsseennnseeans 32
[dentifying ASSOCIATEA RECOITSveevieeireetieeiie ettt ste et eette et e stte st e st e e st essse e st asstesaseessseeseenssesseans 32
EXample 1: MUIIPIE PAtHcc..eveeeeieeee ettt ettt ettt et et e et teesataeeeastaesnsaa e nseaennsasesnsssenssaaans 32
Example 2: Bill-Of-Materials Pathisc..cccueeeieeeiiesiieeiieeieeettestte et esiteeteestteeteess e steesssessseesssesseesssesseesssesseans 33

ThE Path ANAIYSIS REPOIT.......coiuieeiieeeeeee ettt ettt ettt ettt et sttt e st et e e et e aae e et e s aeeeateenieesaeens 35

Y L0l Y g Yo T £ =X USSR 35
CONrONEA SOUICEFIIEc..eeeeeeee ettt ettt ettt ettt e et e st e et e ieeseeens 36
CONrolled By SOUICEFIIEccceeeeeeeeeee ettt e e et e ettt e ettt e ettt e et e st e e stteesnseeeenaeeens 36
Example 1: Controlling Database Access from an External Fileccccocoeeeviniiniencnieniciinieneecneeceen, 37
[adeYe | ¢ 10 0 OfcTe [RO PROUPSRPRR 37

DISCUSSION ...ttt ettt e e sttt e e sttt e e ettt e e sttt e e e s bttt e e et et e e e s bt et e e e nnraeeeesabaneeeeaanee 37

Example 2: Controlling Database Access from within the Database HSelfcccoecvevivecvenieeiieeieeiieeie e, 38
Problem STAatEMENT ...couiiiiie et ettt e b e et e et e et esbt e e bt e sbee et e e sbeeeabeenaee 38

[deTe | ¢ 10 0 OfcTe IS RSP RRUPSRUPRRN 38

DISCUSSION ...ttee ittt ettt ettt e e sttt e e sttt e e e s ettt e e sttt e e e s ab et e e e aantt et e e s bt et e e e st aeeeesaneneeeenanee 39

LY B S o Yol=Ye [U15= I @Fe]1 311 aT-1a Lo LTRSS 39
Checking the REtUIN STAtUScoocuieiiiiriiiiieeieeeeeeee ettt ettt et ettt saneens 39

6.5, COMMEANG SUMIMAIY ..ttt ettt ettt et e sttt et e e eb et eabtesat e e b ee e bt e ebee e beesheeeabeesateenbeeeaeeanbeeaabeenbeesabeenbeeeas 40
6.6, EXCLUDE ...ttt ettt ettt et e s bt et e e e bt e b et sa bt e st e e bt e eht e e bt e ehe e e bt e sht e e bt e eabe e bt e e bt e ebeeeabeenaeeen 40
(@reYaaTegE=T e IRV a1) U PURUPSRR 40
USBGE .. e 40
Bypassing Processing fOr @ RECOITocuveiuieecieeie ettt ettt ettt e st e st e et e st e e ste st easeessaeeseanssesseens 41
Bypassing Paths Of RECOITS.........cc.uiiiueiiieee ettt ettt ettt ettt et et e st e et e ee e ens 42
Bypassing CONTROLLED BY RECOITSueeeuiieeiee ettt ettt et e e ente e aeetteeeateeaenaaaeaenaeeens 42

Lo T = I [T O O O T U PUPS PR UR O ETPTPPPPPN 43
COMIMANA SYNTAX ittt ettt ettt ettt ettt sttt e st et e sa et e et e bt e sateeieesaneens 43
USBGO ..ot 43

<38 T €1 = OO OO OP PRSI 44

TABLE OF CONTENTS |

COMMENA SYNTAX 1.ttt ettt ettt et ettt sttt ettt st s et sttt st e 44
USBGE ettt ettt ettt e e ettt et et e e e e s e ettt e e e e e ee s aaeeeee 44
Identifying the RecOrd(S) t0 D REAM...........covuiiiiiieeeee ettt ettt ettt see e 44
SPeCifying the ACCESS KEY VUGcc.eeeeieeiieieeeeeee ettt ettt et se et s e et esateeteessseenseassseenseennses 44
Combining SOURCEFILE and GET Command Syntax OPLioNSc.ccecuereeruiecueniesierienieeiesieenieeienieereneenienane 44
Example 1: Retrieving @ CALC RECOI.....cooiuiiiiiiiieiie ettt ettt et e st ate e e enbeeesnteeeenbee e e 45

Example 2: Retrieving an Indexed RECOIcoiiiiiiiiiiiie ettt 45

Example 3: Retrieving @ Path of RECOIdScoiiiiiiiiiiiiiiiie e e 45

LI o VA N B AN N PP PPPR RPN 46
COMIMANG SYNTAX ittt ettt ettt ettt et at et s et et e st et e st e ebt e st e st e et enieesateens 46
USBGE ettt ettt e e e e e e sttt e e e e e e e e ees 46

6.710. HALT SOURCEFILE ...ttt ettt et et e e ettt et e e e e e e e e s e aatabtateeeeaeeeesessaaannasbbataeeeeeaeesessannnssseeeeeeas 46
COMIMANG SYNTAX 1ttt ettt ettt et ettt e st et st et e st et e st e ebt e st e st e et enieesteens 46
USGO .o 46
Identifying the SourceFile(s) to Be Halted...........c.coviiriiiiieieeeeee ettt 46

6.11. ACCEPT FROM CURRENCY ...ttt ettt ettt sttt sb et te bt et sate s bt e bt eb e e bt e bt satesbeeatesbeenteestenbeeneesneenes 47
COMIMANA SYNTAX ittt ettt ettt ettt ea et et e s et et e e s et et e eateeabeeemteesaeeeateenaeesaneens 47
T o T PP 47

6.12. IDMS ACCEPT FROM SET ...ttt ettt sttt ettt et ettt et bt e bttt e bt e bt e st e s bt e bt saeeebeeatesbeenteebtebeemeesaeenee 47
COMMENA SYNTAX 1.ttt ettt et ettt ettt ettt st s bttt sat et s s et e 47
USBGE .ttt ettt et e e e ettt et e e e e e s e ettt et e e e e e e et eees 47

6.13. RELEASE ...ttt ettt et ettt ettt et e e e e e e e e s aaatttteeeeaeaeeeesaaaathbteteeeeeeeeeee e e e e nhhbtatteeeeeeeeeeannnnbtraeeaeeeas 47
COMIMANG SYNTAX ittt ettt ettt ettt et sat et e st et e s a ettt et e st e eateenieesateens 47
USQGIO .. 47

B. 14, START <ottt ettt ettt e at e bttt e et e s h et e be e bt e et s bt e s bt e et sh e et e he bt e et s bt e bt she bt eae e eh e et eu b e bt et saeenee 48
(@reYaaTeat=ToTe IRV o} =) USRS 48
5T 1= TSP PSSP PP PP OPPPPPPRPPPPPPIN 48
Identifying the Record OF SUBSCREMAcccuveiieeciieeie ettt ettt et e e et este et aeesaeesaennseeseens 48
Specifying the STarting POSITIONccoteiirierieiieieeieeeete ettt sttt ettt ettt 48
Chapter 7 - MetaSuite CA-IDMS DML Commands........cccceueeriennirienncriennnnnen. 49
710 OVEIVIEW ..ot st s e a e et saa et 49
7.2, Checking the RETUIM STAtUSeiiitiiiiiiieetiee ettt ettt ettt e ettt e st eessateesbteesnbeesasteessteeennbeesanseeesnseean 49
7.3, COMMEANG SUMMAIY cnttiiitiiiitiitett ettt ettt et sttt e ettt st et e s bt esaae e bt esaeeembeesateeneeemseebeeeabeesbeesabeenanenas 49
7.4. ACCEPT FROM CURRENC Ycoittiiimititiriteitettrte sttt st ettt sttt st she et sbe e s bt estesasesbeebesheenbeemstabeentesusenseennesueenne 50
(@reYanTeat=To e IRV o} =) OSSPSR 50
USBGE .. 50
Identifying the GlobalField fOr the DD-KEYc.cccueeiieiieeieeeiie ettt ettt ettt eteesteetae e e saeeseesaeeseens 50
Requesting the Db-key of the CUrrent RECOIMcooiecuirieniieiiieeiieie sttt 51
SPECITYING @ RECOIA INBIME ...ttt ettt et ettt e e et e et e e st e e nteesstesaseenseassseenseansseenseensses 51
SPECITYING @ SEE INGIME ...ttt ettt ettt sttt ettt sttt et s et enaeennen 51

7.5, ACCEPT FROM SET ..ottt ettt sttt et sttt sttt sttt st bt et she e bt et sb e et e et she e bt eaeenbeentesbtenbeennesbeenne 51
(@reYaaTeaE=To e IRV o} =) OSSPSR 51
USBGE .. e 52

7.6.

7.7.

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

7.14.

TABLE OF CONTENTS |

[AENEIFYING ThE ST ...ttt ettt ettt sttt sttt st e 52
SPECIYING ThE RECOIT ...ttt e et ettt e st et e st e e s e esaesseenstaeaseassseenseasssesnseensses 52
[F IMIEMMIBER ...t e e e e e e e e e e ettt ettt ettt bttt bbbt s e e e e e e e e eeeeeeeeeeeeeeeeae et beebbebbbaaaaaas 52
COMMANG SYNTAX ettt ettt ettt ettt ettt et s et et st et e st esat e st e st esateesaeesteens 52
USQGO .. 52
Testing @ Record for SEt MEMBEISRIDc.ccocuei ittt ettt 53
Testing @ Set fOr MemMbBDEr RECOITS.ccc.ceuiriiieeeeteee ettt ettt ettt 53
OBTAIN DB-KEY IS ...ttt ettt e e e e e e ettt ettt e e e e e e e e s s bbbt e et e eeeeaeeseanaannssbbaeteeeeeeeessananannssbeeaeeeas 54
COMMANG SYNTAX ittt ettt ettt et ettt et s et et st et e et esat e et e st e eteenieesteens 54
USBGE ettt ettt e e e e e e s ettt e e e e e e e st eee 54
SPECITYING @ RECOIA INGIME ..ottt ettt et ettt ettt ettt e 54
Identifying the GlobalField fOr the DB-KEYccueiiieiiieeeee ettt ettt et e 54
OBTAIN CURRENT WITHIN SET ..ottt ettt ettt ettt ettt ettt e bt bt e sae e e b e e sabeebeesateesbeeenbeesbeeenbeennee 54
COMMANA SYNTAX ittt ettt et ettt et sttt s et et e s e st et e st st e esneens 54
0T 1= TS PSPPSR OPPPPPPPPPPRPPIN 54
Requesting the Current Record for @ SUBSCREMA.........cc.oiuiiiiiiiiieeeeeee et 55
SPECITYING @ RECOIA INBIMIEeeieeee ettt et ettt ettt ettt et ettt e et et e et e naee e 55
SPECITYING @ SO INBME ..ttt ettt ettt sttt et et ettt ettt et 55
OBTAIN WITHIN SET ..ttt ettt ettt ettt e s bt et e st e st e emte s a e e s b e s et e ebe e bt esee st eembeeate st entesbeensesbeens 55
COMMEANA SYNTAX 1.ttt ettt sttt ettt st h ettt et s ettt sat ettt 55
USBGE ettt ettt e e ettt et e e e e e e e ettt et e e e e e e e aaeeeee 55
Specifying the Relative RECOIrd to ODBLaiNc..cocuemeeiirieniieiieieeieetetesiete ettt ettt ettt 55
SPECITYING @ RECOIA INGIME ..ottt ettt ettt et ettt e et e s st e e ateassae e st e ssseanseeasesenseenssesnseassenans 56
SPECITYING ThE SO ...ttt sttt sttt ettt st s ht ettt ettt et s e st enaeenne 56
OBTAIN WITHIN AREA ...ttt ettt ettt b e et b e e bt e s et e bt sat e e s bee s ateesbeesateesbeeeabeenbeeenbeenaee 56
COMMEANA SYNTAX .ttt ettt ettt ettt e ettt e ettt e sttt e e bt e et e et e e st e e aaiteesiteeea 56
USBQE ..ottt e et e st e e et e e e naee e e 56
Specifying the Relative RecOrd t0 ODBaiNcecuiiiiieeiieieee ettt ettt ettt et esaee et esseeeneeenaees 56
SPECITYING @ RECOIA INGIME ..c.ueieeee ettt ettt ettt ettt sttt 57
SPECIYING THE AF@A ...ttt et et e et e at et e et e s e e ae et e e st e et e s ateeeteeenteenseeenseenaeas 57
OBTAIN OWNER WITHIN SET ...ttt ettt et ettt et e st e bt e st e bt e s bt e sbeeeabeesaeeembeesmteesbeeenbeenbeeenbeennes 57
COMMANA SYNTAX ittt ettt ettt ettt ettt ettt st et e sae et et sane e eesaneens 57
0T 1= T PR PSP PP PPPTSPPPPPPPPPPPRPPIN 57
SPECITYING @ SO INBIME ...ttt ettt ettt et e he et et e ettt s et e bt et e e et e nte et e naeennens 57
OBTAIN RECORD-NAME ...ttt ettt ettt ettt e bttt e be et e ste s bt e bt s st e abeeateebee st e enbeeatenseentesbeensesbeans 58
COMMEANA SYNTAX 1.ttt ettt ettt ettt ettt sttt st sttt st ettt e 58
(0T 1= T U ST P PSP UPPPPPUPPPRPN 58
Specifying Which ReCOrd t0 OBtaINccueoieriieiirieiieieeteeieee ettt ettt sttt et st 58
SPECITYING @ RECOIA INGIME ..ottt ettt et e sttt e et esst e e teassteeseeesseenseesseaenseenssennseenssenans 58
OBTAIN WITHIN SET USING SORT KEY .. ettttttitiiiiiieiiiititeteeeee e e ee ettt e eeeeeeesessssanbsaeeeteeeeeaeesssssnnsesseeaeeeas 58
COMIMANG SYNTAX 1ttt ettt ettt et ettt et e sat e et s ettt e st et e et e sttt s bt e st e sateenieesateens 58
USGO . 58
SPECITYING @ RECOIA INBIME ...ttt ettt ettt ettt ettt sttt 59
SPECITYING 8 SO INGME ..ttt ettt ettt ettt ettt sttt e 59
SPECIfYiNG the SOrt-KEY VAIUEcc..eoiiiieiiiiee ettt ettt ettt st 59

RELEASE ... e e bbbt 59

TABLE OF CONTENTS |

COMMENA SYNTAX 1.ttt ettt ettt et ettt sttt ettt st s et sttt st e 59
(0T 1= T T O TSP PP PTO TP PPPPOPPPRPI 59
Appendix A - Appendix A - MetaStore Manager Collect for CA-IDMS............. 60
AT OVEBIVIBW ..ttt ettt e ettt ettt e e e e e e e et bttt et teeeeeeeaa e a abb bttt b et e eeeeeeeaaaasbbbbbteteeeeeeeeaeaaantnee 60
MetaSuite aNd CA-IDMS TEIMSooouiieiiieeeeeeeeee ettt ettt ettt ettt ettt st eaeens 60
A2, IDMS SCHEMA ...ttt et et ettt e et e e e e e e s ea bbbt ittt teeaaeeeaasa ababbtstaeeaaeeeesaasassstnbaeteaeeeessssnannnenne 60
YoV g er=N 121 e Ta s o =TT o PSS 60
IDMS File INFOIMATIONeoecuiieeeiiee et ettt ettt e et e e ettt e et e e et e e e tbeeeatseaesaseaeeasssasnsssesnsssasassasesseaans 61
1L V- o =SOSR 61
YV Tl s I=Taa T I AV =T o 1= U SPPRR 61
DTz o T L= I AV o s 1= USRS 61
10 SRR 62
3z Taa] o) =3RS URUPRSPR 62
A3, IDMS RECORD ...ttt ettt ettt ettt e et et e et et e ae e e a e st e e m e e eae e et eae e st em et emeeeheemeeemeeneeeneeeeeenteenteaneenteeneeteeneens 65
SOUICE INTOIFMELION ...ttt et e et e ettt e ettt e e ettt e e et eeeate e e ets e e e aseaaaesesenassseaasasesesasaensssesssnesseeas 65
1Y R 1= [] £ g2 aT- 1 1T D USUPRSRR 66
10 SRR 66
L3z Taa] o) =SSOSR 66
Appendix B - Appendix B - Sample Programscccccovvuiiiiinniiiiiniiriennccneenne. 68
B.T. MDL data SAmMPIEs.....co ittt st ettt ettt et e st et ebee et enneen 68
MDL definition of IDMS-SIMULATION-CARS ..ottt ettt et eee e 68
MDL definition of IDMS-SIMULATION-GARAGES.oooueeeeeeeeeeee et eeee ettt eeteeeeteeeettaeeesaaeeseaesveaenasaaens 68
B.2. SAmMIPIE T - "Via INA@X" ..ottt ettt s h ettt e bttt e bt e eabe e bt e sate e beesateenaeas 69
SR ST o7 o) =N @] 1 2 | RSP UUSR 71
B.4. Sample 3 - "Controlled by work field"ooiii e e 72

1.1.

1.2.

CHAPTER 1
About This Manual

MetaSuite file access for IDMS is intended for users with some experience with MetaSuite. It provides the
information you need to use the MetaSuite IDMS Database File Access, including discussions on CA-IDMS
concepts, defining a CA-IDMS 'database' for use with MetaSuite and using MetaSuite commands to access

CA-IDMS databases.

Because most MetaSuite commands are independent of the environment in which MetaSuite operates, only
those commands that pertain to CA-IDMS database definition and access are described in this supplement.
MetaSuite User and Reference Guided are the primary sources of information about MetaSuite.

Prerequisites

Readers are expected to be familiar with CA-IDMS.

Related Publications

The MetaSuite User and Reference Guides describe the different MetaSuite components and provide
examples for using MetaSuite. Those guides should be available for reference during the installation and test

procedures described here.

The following table gives an overview of the complete MetaSuite documentation set.

Release Information

Release Notes 8.1.3

Installation Guides

BS2000/0OSD Runtime Component
DOS/VSE Runtime Component

Fujitsu Windows Runtime Component
MicroFocus Windows Runtime Component
MicroFocus UNIX Runtime Component
0S/390 and Z/OS Runtime Component
OS/400 Runtime Component

VisualAge Windows Runtime Component
VisualAge UNIX Runtime Component
VMS Runtime Component

User Guides

INI Manager User Guide
Installation and Setup Guide
Introduction Guide

MetaStore Manager User Guide
MetaMap Manager User Guide
Generator Manager User Guide

ABOUT THIS MANUAL |

Technical Guides

ADABAS File Access Guide

IDMS File Access Guide

IMS DLI File Access Guide

RDBMS File Access Guide

XML File Access Guide

Runtime Modules

User-defined Functions User Guide

If you are unfamiliar with MetaSuite, the following technical description provides you with a brief overview.

The MetaSuite System

MetaSuite Database Interfaces

MetaMap Manager

MetaStore Manager

Generator Manager

MetaSuite is designed for data retrieval, extraction, conversion and
reporting. It includes a workstation-based graphical user interface and
a mainframe runtime component.

MetaSuite can access data from a number of database management
systems, using the same commands, program structure and retrieval
techniques used for non-database files. Each database interface is
available as an optional enhancement to the base product.

MetaMap Manager is the MetaSuite tool used to define models. Such
models are intuitively built by describing overall program
specifications, input file definitions (data and process) and target file
definitions (data and process).

MetaStore Manager is a tool that provides metadata maintenance and
documentation services.

The Generator Manager is the system administration tool.All kinds of
basic functionalities and customization possibilities are supported by
this tool.

CHAPTER 2

MetaSuite File Access Overview

Because most MetaSuite commands are independent of the environment in which MetaSuite operates, only
those commands that pertain to a CA-IDMS database definition and access are described in this supplement.

Additional chapters in this manual include:

CA-IDMS Concepts and Terminology

About the MetaSuite IDMS Interface

Defining a CA-IDMS Database to MetaSuite

Programming with the IDMS File Access

Reference to CA-IDMS DML Commands

Collect from IDD using MetaStore Manager

IDMS Samples

Presents a brief overview of the concepts and terminology
you need to have to work with a CA-IDMS database.

Introduces the facilities of the MetaSuite IDMS Database
Interface

Tells you how to provide MetaSuite with the definitions of
IDD. These are the definitions necessary to process data in a
CA-IDMS database.

Tells you how to use the MetaSuite commands that access
information stored in a CA-IDMS database.

Tells you how to embed CA-IDMS DML commands in a
MetaSuite IDMS program.

Tells how you can use the MetaStore Manager to produce
MetaSuite file definitions for IDMS definitions out of IDD.

Some worked out MetaSuite MDL and MSL samples

3.1.

3.2.

3.3.

CHAPTER 3

CA-IDMS Concepts and
Terminology

Overview
IDMS is the database management system (DBMS) distributed by Computer Associates. In a CA-IDMS

environment, data is stored in one centralised location, and is defined outside the scope of the application
programs that use the data.

This chapter presents an overview of the CA-IDMS concepts and terms you should know before using
MetaSuite to access a CA-IDMS database. It is broken down as follows:

+ CA-IDMS data structures discusses the CA-IDMS database structures and objects that are pertinent to
MetaSuite processing

* Accessing information discusses general database concepts and access considerations for application
programs.

For more information, see CA-IDMS documentation from Computer Associates.

CA-IDMS data structures

This section describes the main CA-IDMS objects and related topics. The topics covered are:
* Records

* Location Modes

* Indexes

* Data structure diagrams

* Sets

* Set Linkage

* Set order

* Hierarchical data structure

* Network data structure
Each topic is described separately below.

Records

The basic unit of information that you retrieve from a database is a record occurrence. A record occurrence is a
collection of related data items, or fields. A record type defines the format of similar record occurrences. There
can be many record types in a database, each with its own definition.

CA-IDMS CONCEPTS AND TERMINOLOGY |

Record types are connected logically by sets. A single record type can belong to many sets, or none. Each set
defines a different logical relationship between record types. (More on sets later)

In MetaSuite file access for IDMS:
* A CA-IDMS record type is defined and referred to as a RECORD.

Location Modes

Each record is stored in a specific area of the database, using one of the following location modes to determine
its physical location:

* DIRECT -- Records are stored according to a suggested database key, provided by the application program

that stores the record.

* CALC -- Records are stored according to the hashed value or one or more key data items. This key value
is called a CALC-key.

* VIA -- Member records for each set occurrence are stored physically near each other.

CA-IDMS assigns a unique Database key to each record when it is stored, and provides that key to the
program for later use.

Indexes

An index provides ordered access to record occurrences, based on the value of a data item(s) in the record. A
record type can have one or more indexes, or none.

For example, a customer record might be stored with the CALC location mode, where the CALC-key is the
customer number. An index can be defined for the record, based on the customer name, to provide another
means of access to the customer records.

In MetaSuite file access for IDMS:
A CA-IDMS index is defined and referred to as an INDEX.

Data Structure Diagram

A data structure diagram illustrates and documents the relationships among the records of a CA-IDMS
database. These diagrams use the following conventions:

* Arectangle represents a database record type. Record-type rectangles are often subdivided to show specific
information about the record.

* A circle represents a record occurrence.
* Lines connecting rectangles represent set types.
* Lines connecting circles represent actual relationships between record occurrences, within a set occurrence.

* A triangle represents an index, and is connected by a line to the rectangle that represents the indexed record

type.

CA-IDMS CONCEPTS AND TERMINOLOGY |

The following diagram illustrates a portion of a customer database. Customer, invoice, item, and invoice
remark information is each stored separately, on records defined for that specific purpose.

H-CUST-HAME

CUSTOMER

CUSTOMER-INVOICE

INVCHCE-
INVDICE REMARK REMARK

INVOICE-ITEM

ITEM

The sets CUSTOMER-INVOICE, INVOICE-ITEM, and INVOICE-IREMARK relate, respectively, the
CUSTOMER and INVOICE records, the INVOICE and ITEM records, and the INVOICE and
IREMARK records. There is no direct relationship between CUSTOMER and ITEM records, or
CUSTOMER and IREMARK records. Presumably, any application that uses these record combinations
would also access the INVOICE record. Note that the INVOICE record belongs to three sets, while the other
records belong to only one set each.

There is an index for the CUSTOMER record that indexes the records based on the customer names. (IMore
on indexes later)

An occurrence of a CUSTOMER record, with its related INVOICE and ITEM records, might look like this:

invoice
SC3

invoice
S5C106

Sets

Like records, sets have set types and set occurrences. A set type is the definition of a logical relationship
between two or more record types, where one record type is the owner and the other type(s) is the member(s).
The member record type(s) is logically subordinate to the owner record type. A set occurrence is a group of
actual records that are associated by a logical set relationship.

CA-IDMS CONCEPTS AND TERMINOLOGY |

For example, the INVOICE record is the owner of the INVOICE-ITEM set, in which ITEM records are
members. Each INVOICE occurrence owns one or more ITEMs. Each ITEM represents a line item on the
invoice that owns it.

For each set type, one set occurrence exists for each owner record occurrence. A set occurrence can have
multiple member record occurrences. Each member record occurrence can be connected to a maximum of one
set occurrence within a given set type. A set occurrence that has no member record occurrences is called an
empty set.

Note that a member record occurrence can exist disconnected to any set occurrence.

Set Linkage

The owner and members of a set occurrence are linked with one or more of the following types of pointers to
link the record occurrences together within the set:

* NEXT (required for all sets). The owner points to the first member, the first member to the second
member, and so on, with the last member pointing to the owner. This establishes a circular structure.

* PRIOR (optional). The owner points to the last member, the last member to the next-to-the-last member,
and so on, with the first member pointing to the owner. This reverses the order established by NEXT
pointers.

+ OWNER (optional). Each member points to the owner.

The following diagram illustrates an occurrence of the CUSTOMER-INVOICE set, which is linked by all
three types of pointers. The solid lines show the next pointers, the broken lines show the prior pointers, and
the dotted lines show the owner pointers:

Inwaice
SC462

Involce
SC408

In MetaSuite file access for IDMS:
+ A CA-IDMS SPF set (Sequential Processing Facility) is defined and referred to as an INDEX.
* A CA-IDMS non-SPF set is defined and referred to as a LINK

Set Order

The order defined for a set determines where a new member occurrence is linked into an existing set
occurrence. Each set uses one of these ordering methods:

* FIRST - the new member is positioned immediately after the owner record, as the first member of the set.
* LAST - the new member is positioned immediately before the owner record, as the last member of the set.

* NEXT - the new member is positioned immediately after the current member of the set. (See "Accessing
Information", later in this chapter, for more on currency.)

CA-IDMS CONCEPTS AND TERMINOLOGY |

PRIOR - the new member is positioned immediately before the current member of the set. (See "Accessing
Information", later in this chapter, for more on currency.)

SORTED - the new member is positioned according to the value of one of its fields (called a sort-key field),
relative to the values of the same field in the other member records. Member records can be in ascending

or descending order, with respect to the designated sort-key field. Records with duplicate sort-key values
can be positioned first or last, or not allowed.

In the illustration below, invoice SC293 is added to the CUSTOMER-INVOICE set occurrence for customer
26743. The logical position of the new invoice within the set is shown for the next, prior, last and first set-

order options. The program is positioned on the second member occurrence before the new invoice is inserted
into the set (marked with an arrow).

Record
last accessed

Order Mext
Custome

Order Last

CA-IDMS CONCEPTS AND TERMINOLOGY |

To illustrate a sorted set, assume that the INVOICE-ITEM set is sorted in ascending order by the item name
field. The following diagram shows how the duplicate item, BATTERY, is inserted for the duplicates options
LAST, FIRST, and NOT ALLOWED:

Invoice
,—L SCI 7 3
Battery|
QJ/ (Whee)

Exlstlng Battery
battery Item (Radiatn To be ' (2)

added
Duplicates Last - Duplicates First ~~ >/~
/(Invoice (Inmic«e Wheel
SC173 S5C173) i
,}'—"\ ‘T__;/ S :
?:TEW (WhEEI)) Radiato
4 B-arrerv) ==

f—*“r” | @ -
Battery
) e
—— T

ey
Invoice
Duplicates Mot SC173 ™,
ed — __;‘"'_‘“'x
(Bat‘ter‘g) (Wheeg
(1)
Radiatol .

Data Structures

The relationship between records in a single set defines what can be viewed as a sequential structure: each
record in the set is related to the records before and after it, creating a circular list.

A typical CA-IDMS database has many record types. Using sets to define the relationships among these
record types, you can define either a hierarchical or a network data structure.

Hierarchical Structure

A hierarchy is a vertical structure where the member(s) of one set are owners of a second set, the members of
that second set are owners of a third set, and so forth. Each record type might own multiple sets, thus creating
the branching effect illustrated below:

B1 B2

C1 c2 C3

CA-IDMS CONCEPTS AND TERMINOLOGY |

In the above diagram, the set that has the owner record type B1, and member record types C1 and C2,
illustrates a multiple-member set. In this type of set, two or more record types are members of the set. The
member record types are sufficiently related to be accessed together, but either are structured differently or
must be separately accessed often enough to warrant separate record descriptions.

For example, you might create a multiple-member set in an employee database that relates an employee record
to the company benefits provided to that employee. Each type of benefit (medical insurance, life insurance,
pension, and so forth) would have its own record type. An occurrence of the set for an individual employee
would include only those record types that are appropriate for that employee.

Network Structure

A network structure incorporates all the properties of a hierarchy and introduces one additional concept:
records can participate as members in two or more sets. The following diagram illustrates a network structure:

PN
A

01

A network structure provides the answer to the problem of shared membership: a single member record type
that is owned by two (or more) other record types. This member record type, called a junction record, is
associated logically with the owners in both sets, creating a many-to-many relationship (versus the one-to-
many relationship in a hierarchy). Each junction record occurrence relates an owner record occurrence in one
set with an owner record occurrence in the other set, and can be used to store data specific to that combination
of owner records.

For example, assume that in an employee database there are DEPARTMENT records and EMPLOYEE
records. Each department can have more than one employee, and each employee can work for more than one
department. Assume that skills, required by the department and performed by an employee, provide the link
between departments and employees.

CA-IDMS CONCEPTS AND TERMINOLOGY |

Department 100 requires EDIT, PROOF, and PAST-UP skills. Department 200 requires only EDIT skills.
Jane Smith works for Department 200 (as an editor). Bob Jensen works for Department 100 (as a paste-up
artist and proofreader). Julie Arnold and Leonard Manning work for both departments as editors. These
relationships are illustrated on the next page:

Department Employee

Sk Departrment

Laonard
Manning

There is a special case of a network structure, in which occurrences of the same record type are associated in a
many-to-many relationship. This structure is called a bill-of-materials structure, because it represents the
requirements of a manufacturing environment to associate manufactured goods with their component parts.
Each component part might itself have other component parts, and so forth. (In fact, the manufactured good
might be a component part of a still-larger item.)

This structure is effected by creating a member record that is related to the single owner through two set
relationships: one pointing to subordinate components (components-used) and one pointing to larger items, of
which the owner item is a component (components-of).

The created (junction) record might include information such as the quantity used. The following diagram
illustrates a bill-of-materials structure:

FART

COMPOMENTS-USED COMPOMENTS-OF

COMPOMEMT-
JUNCTION

3.4.

CA-IDMS CONCEPTS AND TERMINOLOGY |

Accessing Information

This section discusses some general concepts relating to CA-IDMS database access.

Integrated Data Dictionary (IDD)

A key component of a CA-IDMS database is the Integrated Data Dictionary (called the IDD). The IDD is
itself a CA-IDMS database and contains the definitions of all the data and data relationships contained in the
database. Definitions of non-database files can also be stored in the IDD.

All CA-IDMS users have at least one IDD. In a distributed or shared database environment, there may be
multiple IDDs. In this environment, there is always a primary, or default, IDD that CA-IDMS uses if you do

not name another IDD when you access the database.

During program processing, CA-IDMS uses the IDD for data definition information required to execute
program requests.

Schema

The highest form of database definition information stored in the IDD is the schema definition. A schema
completely describes a logical collection of records with their set relationships. There can be multiple schemas
defined in the IDD, and multiple versions of the same schema definition.

A schema also includes information about the physical characteristics of the entities it defines. For records, this
information includes the storage area within the database in which occurrences of the record are stored, and
the location mode used to determine where to store each record within its area. For sets, this information
includes the type of set linkage to be used and the order in which member records are to be stored in the set.

Subschema

An application view of a database is through a subschema. A subschema defines a subset of a schema, and may
include all or some of the entities defined by the schema. A program can access only the records and fields that
are defined to the subschema it uses to access the database.

Run-Unit

Each program that accesses a CA-IDMS database must name the subschema it wants to use when it first signs
onto CA-IDMS. The sign-on process is called binding to CA-IDMS. Binding establishes the program as an

individual run-unit within the CA-IDMS environment.

Once a run-unit is established, the program can begin to navigate the database to retrieve or store information.

Path

There are many ways to navigate a database structure. If a program needs to access more than one type of
database record, a path through the records must be determined.

A path defines the way in which the program traverses the database: the choice of records to be processed and
the relationships that join them. Each path begins with a specific record, or entry record, and proceeds through
the database structure, from one record to another, using the set relationships. There are two types of paths:

single path and multiple paths.

A single path has no branches. In the customer database, a single path might include the CUSTOMER,
INVOICE, and ITEM records.

A multiple path has one or more branches. In the customer database, a multiple path might include the
CUSTOMER, INVOICE, ITEM, and IREMARK records. the path branches at the INVOICE record,
which owns both the ITEM and IREMARK records.

CA-IDMS CONCEPTS AND TERMINOLOGY |

The choice of the entry record for a database path is often determined by the location mode of the records to
be accessed. For example, a record that uses the CALC location mode often makes a good entry record,
because it can be accessed directly, using its CALC-key value.

Currencies

To aid in successful navigation of the database, CA-IDMS maintains the Db-keys of the most recently
accessed records, which are categorized as follows:

Currency Type Description

Run-unit The most recent record occurrence, of any type, accessed by the program is the current
of run-unit.

Record type The most recent record occurrence for each record type is the current of record type
for that type.

Set The most recent (owner or member) record occurrence in each set is the current of set

for that set.

Area The most recent record occurrence in each area is the current of area for that area.

IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

4.1.

CHAPTER 4

Using MetaSuite with a CA-IDMS

database

This chapter introduces the MetaSuite facilities that allow you to access a CA-IDMS database from a
MetaSuite application.

You should be familiar with the CA-IDMS concepts presented in the section CA-IDMS Concepts and
Terminology (page 4) before reading this chapter.

To access a CA-IDMS database from a MetaSuite application, MetaSuite requires two things:
* Access to the CA-IDMS data definitions necessary to process the data in the CA-IDMS database. These

definitions can come directly from IDD via the MetaStore Manager or prepared manually by creating an

MDL (MetaSuite Definition Language) import — export text file.

* Specific MetaMap Manager commands to define the actual data retrieval requests for the CA-IDMS
database. The MetaSuite Generator converts these MetaMap Manager commands into their CA-IDMS
equivalents and produces a standard COBOL program with CA-IDMS statements.

The remainder of this chapter presents a brief overview of the MetaSuite facilities for providing access to the
CA-IDMS data definitions and defining the data retrieval requests. This chapter also includes a description of
the program generation process, as well as a summary of the differences between MetaSuite and CA-IDMS
terminology.

MetaSuite and CA-IDMS Terminology

All MetaSuite file access components use the same terminology when referring to data structures. The
MetaSuite terminology, though, may differ from that of an individual DBMS. The relationships between the
basic MetaSuite and CA-IDMS terms are as follows:

File Schema

Record Record Type
Field Field

Index CA-IDMS Index
Link CA-IDMS set

The MetaSuite terms are described separately below, along with their CA-IDMS correspondences.

4.2.

USING METASUITE WITH A CA-IDMS DATABASE |

File

In MetaSuite file access for IDMS, a CA-IDMS Schema is defining a MetaSuite file. For each file, the default
subschema within the schema to be used is specified on the file definitions through the DBNAME notion.
The file allows all data from the different records within the file to be treated as a logical record.

Record
In MetaSuite file access for IDMS, a CA-IDMS record type is known as a record.

One occurrence of a record type is referred to as a record occurrence. Note, though, that the term "record" can
be used to mean either a record type or a record occurrence (that is, a row). The meaning in a given case
depends on the context.

Field
In MetaSuite File Access for IDMS, a field on a record type is known as a field.

Index

In MetaSuite File Access for IDMS, a CA-IDMS index is known as an index. It will give you the possibility
to determine yourself the access path towards the records.

Link
In MetaSuite File Access for IDMS, a CA-IDMS set is known as a link. You will use the links to determine
how the relations have to be set between multiple records in a file.

Data Definition Facilities
MetaSuite provides two separate data definition facilities for use in the CA-IDMS environment:

* The MetaStore Manager collect option provides MetaSuite with access to the data definitions stored in
IDD (exported through the use of a CA-IDMS punch) to define CA-IDMS objects to the MetaStore
Manager (as records and fields).

* CA-IDMS dictionary files created manually in the MetaStore Manager.
Refer to the MetaStore Manager Use Guide for more information.

Programming Overview

MetaSuite programs have the same structure and report processing capabilities regardless of the file
organization used. In other words, their structure and report processing capabilities are the same whether they

are used to access DBMS or non-DBMS files.

Most of the MetalMap Manager commands with which you are already familiar can be used to process a CA-
IDMS database.

When used with a CA-IDMS database, the MetaSuite Generator produces the native CA-IDMS calls for
each MetaMap Manager SourceFile object that names a CA-IDMS file in a MetaSuite application. The
generated native CA-IDMS calls will be dependent of the used path within the MetaMap Manager
SourceFile. Multiple SourceFile objects for CA-IDMS files can be used in a single application program. The
same matching, controlling, and buffering capabilities are used with a CA-IDMS "file" as with a non-database

file.

USING METASUITE WITH A CA-IDMS DATABASE |

The section Defining a CA-IDMS Database (page 17) presents detailed instructions on using the MetaMap
Manager commands that access a CA-IDMS database.

CA-IDMS SourceFile path

In processing a program constructed with MetaSuite File Access for IDMS, the MetaSuite Generator
converts the different components within the SourceFile path to the proper CA-IDMS native calls in the
resulting COBOL source program.

The SourceFile object options for MetaSuite File Access for IDMS are described in the section Programming
With MetaSuite File-Access (IDMS) (page 26).

Extended MetaSuite Facilities

The SourceFile object offers the following expanded file-based retrieval and processing, beyond the joining
capabilities described above:

* File matching. The MATCH option of the SourceFile object allows CA-IDMS files (that is, data returned
by relational) to be matched with CA-IDMS or non-CA-IDMS files.

* Controlled retrieval. The CONTROLLED option of the SourceFile object in conjunction with the GET

command allows an individual row to be retrieved randomly.

» Controlled by retrieval. The CONTROLLED BY option of the SourceFile object allows sets of rows to

be retrieved randomly.

What the Program Sees

What a MetaSuite application sees is a logical record (path) consisting of one row returned by the CA-IDMS
call.

Multiple Databases

MetaSuite can access up to 100 files in one program. These files can include CA-IDMS, relational and other
non-DBMS files.

5.1.

5.2.

CHAPTER 5
Defining a CA-IDMS Database

Overview

This chapter describes how to provide MetaSuite with access to the definitions that it needs to process data in

a CA-IDMS database.

Note that the descriptions in this chapter use both the MetaSuite and CA-IDMS terminology for data
entities, as appropriate. The correspondences between the MetaSuite and CA-IDMS terminology are
discussed in detail in the section CA-IDMS Concepts and Terminology (page 4). These correspondences are
summarized in the following table.

File A CA-IDMS schema
Record A CA-IDMS record type
Field A CA-IDMS field

Index A CA-IDMS index

Link A CA-IDMS set

Before you can access data in a CA-IDMS database, you must provide MetaSuite with access to the
definitions necessary to process the data. CA-IDMS versions of the ADD FILE, ADD RECORD, ADD
FIELD, ADD INDEX and ADD LINK commands are provided for defining CA-IDMS files to the
MetaSuite MetaStore (see "Defining Databases Manually," later in this chapter).

However, an easier approach is to use the Collect File functionality of the MetaStore Manager to copy
definitions out of a CA-IDMS schema IDD export, and then load the copied definitions into the MetaStore.
We recommend the use of the collect functionality in the MetaStore Manager to define the CA-IDMS
database to the MetaStore. For more information about this functionality, refer to Appendix A - MetaStore

Manager Collect for CA-IDMS (page 60).

Defining Databases Manually

This section describes how to define a CA-IDMS database to MetaStore manually.

Before defining a CA-IDMS database to the MetaStore, you should obtain the necessary schema, record,
field, link and set information from the CA-IDMS catalog.

Note: Use of the manual coding method is not recommended. It requires careful translation of the CA-
IDMS definitions into MetaSuite definitions. As a result, it is more subject to error than using the
Collect File option of MetaStore Manager.

5.3.

DEFINING A CA-IDMS DATABASE |

Commands
The following table lists the commands used to manually code CA-IDMS data definitions.

MetaSuite Commands that Define CA-IDMS Data Structures

ADD FILE A CA-IDMS schema
ADD RECORD A CA-IDMS record type
ADD FIELD A CA-IDMS field

ADD INDEX A CA-IDMS index

ADD LINK A CA-IDMS set

Each command is described separately below.

FILE

The ADD FILE command defines a CA-IDMS file to the MetaStore. The general syntax for the ADD FILE
command is described in the MetaMap Manager User Guide. The options that refer to CA-IDMS tables are
described below.

The ADD FILE command will describe all records within a CA-IDMS schema.

Format

ADD FILE File-name TYPE IDMS
SCHEMA Schema-name VERSION Schema-version
DBNAME "Subschema-name*
[RULE Business-rule]

File-name

Required. File-name is an arbitrary name of up to 32 characters. It can include alphabetic characters, numbers,
the embedded characters #, @, $, embedded hyphens and embedded underscores. It must begin with an
alphabetic character.

Schema-name
Required. Schema-name is the name of the CA-IDMS schema.

Schema-version
Required. Schema-version is the version of the CA-IDMS schema.

5.4.

DEFINING A CA-IDMS DATABASE |

Subschema-name

Required. Subschema-name will specify the default subschema and optionally the default CA-IDMS database
that is to be used within MetaMap Manager access. The name must be enclosed in single quotes. The format
is 'Subschema-name[.Database-name]'.

Business-rule
Optional. The RULE option is used to add a business rule documenting your file.

Example
A CA-IDMS customer database is to be defined to the MetaStore. After examining the IDMSRPTS listings

for this database, it is determined that the subschema, or "application view" for the database, that we want to

use is named "CUSTSS01". An ADD FILE command would be coded as follows:

ADD FILE IDMSCUST TYPE IDMS
SCHEMA CUSTSCHM VERSION 1 DBNAME "CUSTSSO1*"

RECORD

The ADD RECORD command defines a CA-IDMS record to the MetaStore. The general syntax for the
ADD RECORD command is described in the MetaMap Manager User Guide. The options that refer to CA-
IDMS records are described below.

Format

ADD RECORD Record-name [OF File-name]
SIZE maximum-record-size
[STORAGE-KEY storage-keyfield]
STORAGE-AREA area-name
[RULE Business-rule]

Usage
The ADD RECORD command defines a CA-IDMS database record to the MetaStore.

You can find the information you need to code on the ADD RECORD command in both the IDMSRPTS
Subschema Data Dictionary Listing for the subschema, and the Subschema Record Description Listing for
the record.

The Subschema Data Dictionary Listing provides information about a record in the following format:

RECORD: name ID: id VER: n TYPE: x LENGTH: size

The Subschema Record Description Listing provides information about a record in the following format:

RECORD NAME name
RECORD 1D id

RECORD VERSION version
RECORD LENGTH format
LOCATION MODE mode
WITHIN area-name

DEFINING A CA-IDMS DATABASE |

Record-name

Required. Record-name is the name of the record, as shown in the RECORD statement of the IDMSRPTS
Subschema Data Dictionary Listing.

File-name

Optional. File-name is the name of the file to which the record belongs. If this option is omitted, the record is
defined within the current file; that is, within the file named on the most recent ADD FILE statement in the
command stream.

Maximum-record-size

Required. Maximum-record-size is the record size. The record size specified must be at least as large as the

record LENGTH shown in the IDMSRPTS Subschema Data Dictionary Listing.

Storage-keyfield

Required for any record whose location mode is CALC. The LOCATION MODE line on the Subschema
Record Description Listing appears as follows for a CALC record:

LOCATION MODE CALC USING calc-key

Storage-keyfield is the CALC-key name shown in the listing. If the location mode is VIA or DIRECT, the
STORAGE-KEY option is not allowed.

Area-name

Required. Area-name is the WITHIN name on the IDMSRPTS Subschema Record Description Listing, for
the record being defined.

Business-rule

Optional. The RULE option is used to add a business rule documenting your record.

Example

Assume that you want to add four record definitions to the MetaStore for the subschema CUSTSS01. The
first step would be to examine the IDMSRPTS Subschema Data Dictionary and IDMSRPTS Subschema
Record Description Listings for our sample database.

The record information on the Subschema Data Dictionary Listing might appear as follows:

RECORD: CUSTOMER ID: 0611 VER: 002
TYPE: 1 LENGTH: 104

RECORD: INVOICE ID: 0620 VER: 002

TYPE: 1 LENGTH: 40
RECORD: ITEM ID: 0621 VER: 002
TYPE: 1 LENGTH: 226

RECORD: IREMARK ID: 0622 VER: 002
TYPE: 1 LENGTH: 72

The record information on the Subschema Record Description Listing might appear as follows:

5.5.

RECORD NAME
RECORD 1D
RECORD VERSION
RECORD LENGTH
LOCATION MODE
WITHIN

RECORD NAME
RECORD 1D
RECORD VERSION
RECORD LENGTH
LOCATION MODE
WITHIN

RECORD NAME
RECORD 1D
RECORD VERSION
RECORD LENGTH
LOCATION MODE
WITHIN

RECORD NAME
RECORD 1D
RECORD VERSION
RECORD LENGTH
LOCATION MODE
WITHIN

CUSTOMER

0611

002

FIXED

CALC USING CUST-NUMBER
CUST-AREA

INVOICE

0620

002

FIXED

CALC USING INVOICE-NUMBER
CUST-AREA

ITEM

0621

002

VARIABLE

VIA SET INVOICE-ITEM
CUST-AREA

IREMARK

0622

002

FIXED

VIA-SET INVOICE-ITEM
CUST-AREA

DEFINING A CA-IDMS DATABASE |

Using the information from these listings, the MetaSuite ADD RECORD commands would be coded as

follows:

ADD RECORD CUSTOMER OF IDMSCUST SIZE 104 STORAGE-KEY CUST-NUMBER STORAGE-AREA CUST-

AREA

ADD RECORD INVOICE OF

CUST-AREA

ADD RECORD ITEM OF
ADD RECORD IREMARK OF

IDMSCUST SIZE 40 STORAGE-KEY

INVOICE-NUMBER STORAGE-AREA

IDMSCUST SIZE 226 STORAGE-AREA CUST-AREA

IDMSCUST SIZE 72 STORAGE-AREA CUST-AREA

The subschema reference CUSTSS01 will be done in the ADD FILE statement for IDMSCUST. The record
sizes are taken from the LENGTH fields on the Subschema Data Dictionary Listing. The storage areas and
storage keyfields are taken from the WITHIN and LOCATION MODE statements on the Subschema
Record Description Listing.

INDEX

The ADD INDEX command defines a CA-IDMS index set to the MetaStore. The syntax for the ADD
INDEX command is described below.

Format

ADD INDEX index-set-name BASED ON index-field-name

DEFINING A CA-IDMS DATABASE |

Usage

A set is described on a CA-IDMSRPTS Subschema Set Description Listing, as follows:
SET index-set-name

PRIVACY LOCK IS

OWNER I XOWNER

MEMBER member-record ASC index-field-name

An OWNER record name of IXOWNER indicates that the set is to be defined as an index. If the owner
record name is anything else, use the ADD LINK command to define the set.

Index-set-name

Required. Index-set-name is the name of a CA-IDMS set (identified by SET in the Subschema Set
Description Listing).

Index-field-name

Required. Index-field-name is the name of the keyfield for the set, as shown following the MEMBER record
name in the Subschema Set Description Listing.

Example
Assume that the IDMSRPTS Subschema Set Description Listing for the sample database shows the

following information:

SET I X-CUST-NAME

PRIVACY LOCK 1S

OWNER I XOWNER

MEMBER CUSTOMER ASC CUST-NAME

To define the set to the MetaStorSourceFile Path you would code:

ADD INDEX IX-CUST-NAME BASED ON CUST-NAME

Note that you must define the CUST-NAME field to the MetaStore before you can reference the IX-CUST-
NAME index set in a MetaSuite application program.

LINK

The ADD LINK defines CA-IDMS sets to the MetaStore as link entities. The syntax for the ADD LINK
command is described below.

Format

ADD LINK link-name
FROM owner-record TO (member-record,...)
[OPTIONAL]

DEFINING A CA-IDMS DATABASE |

Usage

A set is described in the IDMSRPTS Subschema Set Description Listing as follows:
SET set-name

PRIVACY LOCK IS

OWNER owner-record

MEMBER member-record

Link-name

Required. Link-name is the set name (SET), as shown in the Subschema Set Description Listing for the
subschema.

Owner-record

Required. Owner-record is the name of the OWNER record type, as shown in the Subschema Set Description
Listing. If the owner record in the Subschema Set Description Listing is IXOWNER, the set must be defined
to the MetaStore, using the ADD INDEX command.

Member-record

Required. Each member-record is the name of a MEMBER record type in the set being defined, as shown in
the Subschema Set Description Listing. If the set has only one member record type, the parentheses may be
omitted.

OPTIONAL

Optional. The OPTIONAL specification indicates that the participation of a given record type in the set is
"optional"; that is, CA-IDMS allows the link between two record types to be either present or absent under
user-defined conditions. If the MEMBER line of the IDMSRPTS Subschema Set Description Listing for
the set contains the word OPTIONAL, you must include the OPTIONAL keyword here.

Example
To continue the definition of our sample CUSTSS01 database, assume that the IDMSRPTS Subschema Set

Description Listing contains the following information:

SET CUST-INVOICE
PRIVACY LOCK 1S

OWNER CUSTOMER
MEMBER INVOICE

SET INVOICE-ITEM
PRIVACY LOCK 1S

OWNER INVOICE
MEMBER ITEM OPTIONAL
SET INVOICE-IREMARK
PRIVACY LOCK 1S

OWNER INVOICE
MEMBER IREMARK

SET I X-CUST-NAME

PRIVACY LOCK 1S
OWNER I XOWNER

DEFINING A CA-IDMS DATABASE |

MEMBER CUSTOMER ASC CUST-NAME

Based on this information, the following ADD LINK commands would be coded for the CUSTSS01
database:

ADD LINK CUST-INVOICE FROM CUSTOMER TO INVOICE
ADD LINK INVOICE-ITEM FROM INVOICE TO ITEM OPTIONAL
ADD LINK INVOICE-IREMARK FROM INVOICE TO IREMARK

FIELD

The ADD FIELD command defines a record field as a field to the MetaStore. The syntax for the ADD
FIELD command is described below.

Format

ADD FIELD field-name [OF { record | group-field }]
[POSITION start]
[SI1ZE characters]
[OCCURS number-times
[DEPENDING ON depend-field]]
[TYPE { CHARACTER |
BIT number |
FLOAT |
BINARY [DECIMAL places] |
PACKED [DECIMAL places] [UNSIGNED] |
ZONED [DECIMAL places]
[UNSIGNED | [SEPARATE] LEADING]] } 1
[DATE “format”]
[EDIT "mask"]
[INITIAL value]
[LIMITS (minimum TO maximum)]
[RULE Business-rule]

Usage
The ADD FIELD command defines a CA-IDMS record field. The syntax is described in the MetaMap
Manager User Guide, and is not repeated in this supplement.

CA-IDMS field-definition information appears in both the IDMSRPTS Subschema Data Dictionary Listing
and the IDMSRPTS Subschema Record Description Listing.

Before generating MetaSuite application programs that reference the associated records, you must define any
fields named as storage-keyfields on ADD RECORD commands or index-field-names on ADD INDEX
commands, as well as any other fields referenced in your MetaSuite programs.

Example

In our example CUSTSSO01 database, assume that the IDMSRPTS Subschema Data Directory Listing shows
the following information for the CUSTOMER record:

NAME LEVEL STRT LENGTH TYPE PICTURE
CUST-NUMBER 03 1 10 A/N X(10)
CUST-NAME 03 11 20 A/N X(20)
CUST-ADDRESS 03 31 40 GROUP

CUST-ADDR1 05 31 20 A/N X(20)

DEFINING A CA-IDMS DATABASE |

CUST-ADDR2 05 51 20 GROUP
CUST-CITY 06 51 15 A/N X(15)
CUST-ZIP 06 66 5 A/N X(5)

The ADD FIELD commands for this record would be coded as follows:

ADD FIELD CUST-NUMBER OF CUSTOMER POSITION 1 SI1ZE 10 TYPE CHARACTER

ADD FIELD CUST-NAME POSITION 11 SI1ZE 20 TYPE CHARACTER

ADD FIELD CUST-ADDRESS POSITION 31 SIZE 40 TYPE CHARACTER

ADD FIELD CUST-ADDR1 OF CUST-ADDRESS POSITION 1 SIZE 20 TYPE CHARACTER
ADD FIELD CUST-ADDR2 OF CUST-ADDRESS POSITION 21 SIZE 20 TYPE CHARACTER
ADD FIELD CUST-CITY OF CUST-ADDR2 POSITION 1 SIZE 15 TYPE CHARACTER

ADD FIELD CUST-ZIP OF CUST-ADDR2 POSITION 16 SIZE 5 TYPE CHARACTER

Note: The positions of subfields to the MetaStore are specified relative to the beginning of the group
field, whereas in the IDMSRPTS Subschema Data Directory Listing, the positions of subfields are
specified as absolute positions within the record.

CHAPTER 6

Programming With MetaSuite File-

6.1.

6.2.

Access (IDMS)

Overview

This chapter describes how to use the MetaMap Manager commands that access information stored in a CA-
IDMS database.

* Data source commands define the SourceFile, ExternalArray and GlobalField objects to be used during the
program processing. For CA-IDMS SourceFiles, the SourceFilePath can specify how the CA-IDMS
records need to be accessed within the SourceFile.

+ TargetFile objects define the output you want to generate.

* Procedural commands define the processing you want to occur, if any.

These program sections are described in detail in the MetaSuite User Guide and in the MetaSuite Reference
Guide.

The SourceFile objects may differ in use with a CA-IDMS SourceFile than with a non-database SourceFile.
Target objects are unaffected by access to a CA-IDMS SourceFile.

Note that the descriptions in this chapter use the MetaSuite terminology exclusively. The correspondences
between the MetaSuite and the CA-IDMS terminology are discussed in detail in the section Using MetaSuite
with a CA-IDMS database (page 14). These correspondences are summarized in the following table.

File Schema
Record Record type
Field Field

Index Index

Link Set

Programming Considerations

When coding a program that accesses a CA-IDMS database, you should be aware of the considerations below.

Accessing the database

In general, you access a CA-IDMS database as you would access a non-database SourceFile.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

You define each subschema that you want to access through a SourceFile and a SourceFilePath object, whose
options define whether the database is to be accessed automatically by MetaSuite or through your procedural
code.

Besides the normal access methods, you can access a CA-IDMS database also through the known CA-IDMS
DML commands. In this case the CA-IDMS database needs to be defined by a 'Manual' CA-IDMS
SourceFile.

Note that the procedures you write for a SourceFile object can contain only one type of access command:
either MetaSuite DML commands (to access Manual SourceFiles) or GET commands (to access Controlled
SourceFiles), but not both.

Processing Sequence

You must be aware of the processing sequence of a MetaSuite program, to avoid issuing a database command
when no successful access is possible. For example, assume you try to access the CA-IDMS database from a
SourceFile initial procedure for another SourceFile. The access request will be unsuccesstul, unless you have
already specified the SOURCEFILE command for the database, because the database has not yet been
opened. See the "Order of Execution" topic in the MetaSuite Reference Guide for information about program
processing sequence.

Navigating the Database

There are many ways to access a CA-IDMS database, some more efficient than others. The efficiency of your
program processing can be determined by the entry record you choose to begin your database retrieval, and the
methods you use to move from one record type to another within the path. If efficiency is a consideration,
consult your systems staff for assistance.

Program commands

The MetaMap Manager commands and most procedural commands are unaffected by the use of CA-IDMS
database SourceFiles. Refer to the MetaMap Manager User Guide for the syntax of these commands.

The following MetaSuite commands differ in their use with CA-IDMS databases, they are discussed in this
chapter:

EXCLUDE GET

EXIT HALT

SOURCEFILE START

In addition, there are commands specific to CA-IDMS that closely parallel the CA-IDMS Data
Manipulation Language (DML) commands, both in their syntax and in their use. All of these commands are
enclosed by the keywords EXEC-IDMS (translated to IDMS in the MSL, MetaSuite Specification
Language) and END-EXEC, and are collectively referred to as MetaSuite DML commands.

Efficiency Considerations

When processing a CA-IDMS database, you can save both processing and I/O time by using the START and
EXCLUDE commands.

The START command allows you to bypass unwanted entry records (and their related lower-level records).
If the SourceFilePath defined on the SourceFile accesses several SourceRecords, you can use the EXCLUDE

command in a record input procedure, to bypass processing for lower-level records in the SourceFilePath
hierarchy. This eliminates database accesses for the bypassed lower-level records.

If the SourceFile access is done through a'CONTROLLED BY', you can use the EXCLUDE command to
prevent the building of a controlled set or to skip processing for a controlled set already built. Processing time
is improved by eliminating the overhead of constructing unwanted controlled sets.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

Instructions to use the MetaSuite DML commands, the MetaSuite commands whose processing differs when
accessing a CA-IDMS database, and commands that apply only to CA-IDMS databases appear in the

remaining sections of this chapter.

SourceFile

The options of the SourceFile objects are different for automatic, controlled (by) and manual SourceFiles:

Automatic SourceFile object:

SOURCEFILE SourceFile-name [PREFIX "prefix”]
SCHEMA schema-name VERSION version-number
DBNAME subschema-name
PATH (entry-record [VIA index-name]
[{,subordinate-record VIA link-name

[OCCURS number times]} ..])
[MATCH (match-key,..)]

Manual SourceFile object:

SOURCEFILE SourceFile-name [PREFIX “prefix”]
SCHEMA schema-name VERSION version-number
DBNAME subschema-name

{ MATCH (match-key,..) | CONTROLLED }
MANUAL

Controlled SourceFile object:

SOURCEFILE SourceFile-name [PREFIX "prefix”]
SCHEMA schema-name VERSION version-number
DBNAME subschema-name
CONTROLLED
PATH (entry-record [VIA index-name]
[{,subordinate-record VIA link-name

[OCCURS number times]} .. 1)

Controlled By SourceFile object:

SOURCEFILE SourceFile-name [PREFIX "prefix”]

SCHEMA schema-name VERSION version-number

DBNAME subschema-name

CONTROLLED BY controlling-SourceFile KEY = key-field
PATH (entry-record [VIA index-name]
[{,subordinate-record VIA link-name

[OCCURS number times]} ..])

Each option is described separately on the following pages.

SourceFile-name
Names a SourceFile that has been defined to the MetaStore.

Prefix
Prefix-value is exactly four characters, including alphabetic characters, numbers, and embedded hyphens,
beginning with an alphabetic character.

The PREFIX option allows the same definitions to be used in multiple SourceFile objects. Note that each
reference to an object within the SourceFile will be prefixed with the PREFIX.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

Schema Name
Schema-name is the CA-IDMS schema that you want to use.

Version Number

Version-number is the version of the schema you want to use.

Subschema Name

Subschema-name is the GlobalField, whose value specifies the subschema and optionally the CA-IDMS
database you wish to access. The value of the GlobalField is previously set to the subschema and database that
is defined for the dictionary file in the MetaStore. Its value may be overwritten in a run-time parameter, but
should not be altered in procedural code.

The subschema-name is previously defined as:

FIELD WK-SourceFile-name TYPE CHARACTER SIZE 17
INITIAL “dbname*

With dbname as Subschema-name[. IDMS-Database-name]

PATH

PATH (entry-record [VIA index-name]
[{,subordinate-record VIA link-name
[OCCURS number-times]}.--1)

The PATH option is part of the SOURCEFILE command.
It is mandatory for all IDMS SourceFiles except when the SourceFile is Manual. The SourceFilePath requests

that the generated program constructs a single unit of data, called a "path", from multiple related records in the
database. When this option is in effect, each time data is presented to the SourceFile initial procedure,
SourceFile input procedure, or any report (or TargetFile) input procedure, it is the path of data from the entry
record and its subordinate records that is presented rather than a single record.

When used with a subschema, the SourceFilePath identifies the particular database record types of interest
and the navigational path(s) to be used to retrieve the records, and expresses the relationships between the
records in hierarchical terms. Entry-record is the name of the "highest", or "first-level", record in the
hierarchy; that is, the record that indicates the entry point for the path. Each subordinate-record is the name
of a record related to the entry record or to another previously specified subordinate record.

Note that a link relationship must exist between each record and the next "lower" record in the path hierarchy.
The records named in the PATH specification are said to be either path records or associated records.

The hierarchical route through the records of the database, beginning with the entry record and ending with
the lowest-level subordinate record, is called a path. For example, a path through our example database might

begin at the CUSTOMER record, proceed to the INVOICE record, and end at the ITEM record. Each of
these three records is a path record.
An associated record relates to a path record, but does not itself participate in the path. For example, you could

associate the IREMARK record with the INVOICE record in the path example above. You define an
associated record using the OCCURS option (more on this below, under "Identifying Associated Records").

The rest of this discussion is broken down to provide a detailed description of each PATH specification option,
some examples of advanced path techniques, and a discussion of the Path Analysis Report for database

SOURCEFILE statements.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

Identifying the Entry Record and Its Access Technique

Entry-record [VIA index-name]
Required. Entry-record is the highest level record in the path hierarchy, the record at which the navigation
through the database begins.

Without the VIA option, MetaSuite retrieves the entry records in the sequence they were stored. For the
CUSTSS01 subschema, the following PATH specification requests processing for all CUSTOMER records:

FIELD WK-I1DMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*
SOURCEFILE I1DMSCUST SCHEMA CUSTSCHM VERSION 1
DBNAME WK-IDMSCUST
PATH (CUSTOMER, ...)
With the VIA option, MetaSuite retrieves the entry records in sequence by the index-name. The named index
must be defined for the entry record, using the ADD INDEX dictionary command.

For example, to request that CUSTOMER records will be processed using the IX-CUST-NAME index, you

would code:

FIELD WK-1DMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*
SOURCEFILE 1DMSCUST SCHEMA CUSTSCHM VERSION 1

DBNAME WK-IDMSCUST

PATH (CUSTOMER VIA 1X-CUST-NAME,...)
The CUSTOMER records are accessed in sequence by name. If the program reports require the data to be
sorted in customer name order, use of this SOURCEFILE command would eliminate the need for either a
SourceFile sort or a report/TargetFile sort.

MetaMap correspondence
The Vialndex field is available in the PATH window.

F P2986C: Path PTH-AC- -0 x|
Technical I
Mame I.ﬁ.E-KL.-'i‘-.NT
E ritryR ecord I-&-E'KU—"-NT |
YWhere I ;l
e
'SartField

Yialndex I _l

Identifying Subordinate Records

subordinate-record VIA link-name

Optional. Subordinate-record names a record in the database that has a link relationship with the entry record or
a previously specified subordinate record. There can be up to 15 subordinate records specified following the
entry record.

Link-name names the relationship (set) that needs to be used to find the subordinate-record for an entry
record.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

Note that "subordinate" does not mean the record must be a member of a set owned by the previous record.
The subordinate record may be either the owner or member record of a set containing the previously named
record in the path.

For example, the following path specification requests CUSTOMER and INVOICE records:

FIELD WK-1DMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*"
SOURCEFILE 1DMSCUST SCHEMA CUSTSCHM VERSION 1
DBNAME WK-IDMSCUST
PATH (CUSTOMER, INVOICE VIA CUST-INVOICE)
The system retrieves a CUSTOMER record, then each of its INVOICE records, before retrieving the next
CUSTOMER record. With this SOURCEFILE command, a report containing the following detail line:

DETAIL 1 (CUST-NUMBER SHORT, INVOICE-NUMBER)
might print the following:

CUST INVOICE
NUMBER NUMBER
B R R o e Rk o
16209121286 SC20221
SC20344
SC20401
2153522440 SC41532
SC43456
2248374765 SC10293

Alternatively, you could code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1-
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1

DBNAME WK-1DMSCUST

PATH (INVOICE, CUSTOMER VIA CUST-INVOICE)

This SOURCEFILE command returns exactly the same information as the previous SOURCEFILE
command, except that the input data is in the storage order of the INVOICE records rather than the
CUSTOMER records. Depending on other program functions (such as sorting and record selection), relative
record population sizes and densities in the database, and the internal configuration of the database, one or the
other of these two PATH specifications might be more efficient. If efficiency is a consideration, consult with
your systems staft for advice.

Let's add a third record to the PATH specification:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1-
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
DBNAME WK-1DMSCUST
PATH (CUSTOMER, INVOICE VIA CUST-INVOICE,
ITEM VIA INVOICE-ITEM)

MetaSuite would process this path by obtaining the first CUSTOMER record in the database, the first
INVOICE record for that CUSTOMER, and the first ITEM record for that INVOICE. These three records
would be available to the MetaSuite program procedures as the first path of data.

MetaSuite would next attempt to obtain another ITEM record for the same INVOICE, and would return the
new ITEM record, along with the old INVOICE and CUSTOMER. When there are no more ITEM records
for the current INVOICE, MetaSuite would obtain the next INVOICE record for the first CUSTOMER,
along with its first [ITEM record. Similarly, when there are no more INVOICE records for the first
CUSTOMER, MetaSuite would obtain the next CUSTOMER record and process its INVOICE and ITEM

records as described above.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

MetaMap correspondence
The record set definition (or LINK) must be specified in the Relationship field of the subordinate path.

® P2986C: PathRecord =10l x|
Techhical |
N ame I.&E-EIF'DFII
Cocurs IEI
SubOrdinateRecard I-"—“-E'DPDH _l
Relationship ~ |KLANT-OFDR]

Identifying Associated Records

OCCURS number-times

Optional. The OCCURS option identifies the subordinate record as an associated record. A link relationship
must exist between the associated record and a preceding path record in the PATH specification. Number-
times is a number from 1 to 32,767 that indicates the number of occurrences of the record you want to retrieve.

To determine the number of occurrences of the record actually retrieved after each database access, reference
the system field record-name SYS-PATH-COUNT. See the MetaSuite Reference Guide for a description of
the use of the SYS-PATH-COUNT system field.

Using the same CUSTOMER, INVOICE, ITEM path described above, assume that you would also like to
access information from the first five IREMARK records for each INVOICE. You would code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1-
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
DBNAME WK-1DMSCUST
PATH (CUSTOMER, INVOICE VIA CUST-INVOICE,
IREMARK VIA INVOICE-REMARK OCCURS 5,
ITEM VIA INVOICE-ITEM)

MetaSuite processes the CUSTOMER, INVOICE, ITEM path as described above, except that each time a
new INVOICE record is obtained, up to five IREMARK records associated with the INVOICE record are
also obtained. Specifically, the path contains one CUSTOMER record, one INVOICE record, the first five
IREMARK records for the INVOICE, and one ITEM record.

MetaSuite automatically assumes that ITEM records are related to INVOICE records, because INVOICE is
the last non-OCCURS (that is, path) record, which precedes ITEM.

Note that references to the fields in an OCCURS record must have a subscript, to identify the particular
record occurrence desired. For example, if you want to access a field named IREMARK-SEQ in the third
occurrence of the IREMARK record, you might code:

IREMARK-SEQ (3) or IREMARK-SEQ (Field-name)

where field-name is a numeric field having the value 3.

Example 1: Multiple Path

Assume that you want to retrieve information from INVOICE, IREMARK, and ITEM records. IREMARK
and I'TEM records both have a link relationship with INVOICE. You might code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1-
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

DBNAME WK-IDMSCUST
PATH (INVOICE, IREMARK VIA INVOICE-IREMARK,
ITEM VIA INVOICE-ITEM)

This PATH specification defines a multiple path. The first path includes the INVOICE and IREMARK
records. The second path includes the INVOICE and ITEM records.
During execution, this path contains an INVOICE record, and either an IREMARK record or an ITEM
record. You would use the system fields IREMARK SYS-PATH-COUNT and ITEM SYS-PATH-COUNT
to determine which type of record is present.
Note that for a given occurrence of the INVOICE record, all of its IREMARK records are returned before any
of its ITEM records. A program that prints INVOICE-NUMBER, IREMARK-SEQ, and ITEM-PROD-
NUMBER values using this PATH specification might produce the following output:

INV ITEM
INVOICE REMARK PROD
NUMBER SEQ NUMBER
*hhkkikkik E R ECE R o o
SC20221 01 CCCi1111
DDD22222
DDD22255
SC42533 01

Example 2: Bill-of-Materials Paths

For this example, assume that you have a bill-of-materials structure. For a CA-IDMS database, this structure
is effected using two record types and two link types, as diagrammed here:

FART-MASTER

CALC

PART-MUMEE

BOMAFAREA

FART-EXFL ART-IMFL

PART-JCT

BOMPAREA

The MetaStore commands that define this structure are as follows:

ADD FILE IDMSBOMP TYPE IDMS SCHEMA BOMPSCHM VERSION 1
DBNAME "CUSTSSO1*"

ADD RECORD PART-MASTER OF (IDMSBOMP) SIZE 224
STORAGE-AREA BOMPAREA STORAGE-KEY PART-NUMBER

ADD RECORD PART-JCT OF (IDMSBOMP) SIZE 16
STORAGE-AREA BOMPAREA

ADD LINK PART-EXPL FROM PART-MASTER TO PART-JCT
OPTIONAL

ADD LINK PART-IMPL FROM PART-MASTER TO PART-JCT
OPTIONAL

The following MetaSuite SOURCEFILE command would be used to expand, or "explode”, all part

descriptions down to three levels in the structure:

FIELD WK-IDMSBOMP TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*"
SOURCEFILE IDMSBOMP SCHEMA BOMPSCHM VERSION 1
DBNAME WK-1DMSBOMP
PATH (PART-MASTER,
PART-JCT VIA PART-EXPL,

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

PART-MASTER VIA PART-IMPL,
PART-JCT VIA PART-EXPL,
PART-MASTER VIA PART-IMPL)

The path analysis report (discussed below) for this SourceFile would be as follows:

PATH PATH RECORD ASSOCIATED RECORDS
*KxKx*k E R R o o S S S e o e * Xk
1 PART-MASTER (01)

PART-JCT (01)

PART-MASTER (02)

PART-JCT (02)

PART-MASTER (03)

A program containing this SOURCEFILE command might use the following code to produce a three-level
bill-of-materials explosion:

FIELD COMPONENT SIZE 12 TYPE CHARACTER
FIELD SUB-COMPONENT SIZE 12 TYPE CHARACTER
REPORT 1 PAGE (55,80)
DETAIL 1 (PART-NAME (1) SHORT, -
COMPONENT SHORT, SUB-COMPONENT)
BEGIN REPORT 1 INPUT
CASE PART-MASTER SYS-PATH-COUNT -
EQ 3 COMPONENT = PART-NAME (2) -
SUB-COMPONENT = PART-NAME (3) -
EQ 2 COMPONENT = PART-NAME (2) -
SUB-COMPONENT = " " -
ELSE (COMPONENT, SUB-COMPONENT) = * *

Note that the SYS-PATH-COUNT field for the PART-MASTER record is checked to prevent non-current
values of the PART-NAME field being printed in the report.

This program might produce the following output:

PART COMPONENT SUB
NAME COMPONENT
R R T e = = R R o R e = *Ahk*k
CHICKEN NOODLE SOUP CHICKEN SOUP BASE DEHYD CHICKEN BROTH
WATER
CUBED CHICKEN
NOODLE BLEACHED FLOUR
EGG
VEG SHORTENING
WATER
PACKAGE 112 CAN 322
LABEL 123
GLUE 224
CHICKEN RICE SOUP CHICKEN SOUP BASE DEHYD CHICKEN BROTH
WATER
CUBED CHICKEN
WHITE RICE
PACKAGE 114 CAN 322
LABEL 124
GLUE 224

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

The Path Analysis Report

Any time the PATH specification is coded, the program generator produces a Path Analysis Report,
summarizing the paths that have been specified.

For the following SOURCEFILE command, which defines a single path:

FIELD WK-1DMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*"
SOURCEFILE 1DMSCUST SCHEMA CUSTSCHM VERSION 1
DBNAME WK-IDMSCUST
PATH (CUSTOMER, INVOICE VIA CUST-INVOICE,
IREMARK OCCURS 5 VIA INVOICE-IREMARK,
ITEM VIA INVOICE-ITEM)

the path analysis report would look like this:

PATH PATH RECORDS ASSOCIATED RECORDS
*k*kk K*hkAkhAxhAAkAkAkk kA 0 FhkAAAk
1 CUSTOMER
INVOICE IREMARK (01 TO 05)
ITEM

For the following SOURCEFILE command, which defines a multiple path:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*"
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
DBNAME WK-1DMSCUST
PATH (INVOICE, IREMARK VIA INVOICE-REMARK,
ITEM VIA INVOICE-ITEM)

the path analysis report would look like this:

PATH PATH RECORDS ASSOCIATED RECORDS
E R o o R R o R R S S S S R R o
1 INVOICE
1REMARK
2 INVOICE
I1TEM

Matching files

MATCH (match-key,..) [MANUAL]

The match-key allows you to view records from different SourceFiles simultaneously: match-key identifies the
SourceField or GlobalField whose value is used for match processing.

Match processing functions exactly as described for the SourceFile command in the MetaSuite Reference
Guide, with the exceptions noted below.

With the MANUAL option (on a Manual SourceFile), you must use MetaSuite DML commands to access
the CA-IDMS database in the SourceFile initial procedure. These DML commands must be done on a
SourceFile initial extract procedure, or on a SourceFile initial procedure when SortFields are defined on the
SourceFile.

For example, to match a (non-CA-IDMS) SourceFile containing sales statistics with salesperson information

in a CA-IDMS database, you might code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1-
SOURCEFILE YTD-SALES MATCH (YTD-SALESPERSON)
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1

DBNAME WK-1DMSCUST

PATH (SALESPERSON) MATCH (SALES-NAME)

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

Controlled SourceFile

CONTROLLED [MANUAL]

The CONTROLLED option indicates that all access to the SourceFile is through procedural code, using the
MetaSuite GET command. The GET command allows you to retrieve one specified record or one path from

the CONTROLLED SourceFile.

For example, to define a SourceFile that you want to access using the GET command, you might code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1"
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1

DBNAME WK-1DMSCUST CONTROLLED

PATH (SALESPERSON)

When a CONTROLLED SourceFile is used, after each GET command you should check the SourceFile

SYS-IO-STATUS, to detect whether the access has been successful. Please refer to the section Procedural
Commands (page 39) for returned values of the SYS-IO-STATUS.

The CONTROLLED MANUAL option indicates that all access to the database using the SourceFile is
through procedural code, using the MetaSuite DML commands. All the DML commands must be done from
SourceFile procedure of another SourceFile, or from a TargetFile procedure. You can not add SourceFile
procedures to CONTROLLED MANUAL SourceFiles. Please refer to the section MetaSuite CA-IDMS
DML Commands (page 49) for more information on the DML commands.

Controlled By SourceFile

CONTROLLED BY SourceFile-name KEY = control-key
The CONTROLLED BY option indicates that the records in the database are to be accessed based on values

in another SourceFile. SourceFile-name is the name of the (other) controlling SourceFile. Control-key is either
a field on the controlling SourceFile or a GlobalField whose value is determined in the SourceFile input
procedure for the controlling SourceFile.

You must define a SourceFile path to use the CONTROLLED BY option. The entry-record named in the
SourceFilePath must be a CALC record (that is, defined with a storage-keyfield) or an indexed record (whose
index-field-name was defined using the ADD INDEX directory command).

To process a CONTROLLED BY SourceFile, MetaSuite reads the controlling SourceFile and retrieves its
records, using the control-key value. MetaSuite builds a composite record, called a controlled set, consisting of
records from both SourceFiles.

The controlling SourceFile must define a single path. The path for either the controlled or controlling
SourceFile can include associated records; that is, subordinate-records in the SourceFile path that include the

OCCURS option.

The controlling SourceFile cannot be CONTROLLED itself, although it can be CONTROLLED BY
another SourceFile. You can nest CONTROLLED BY specifications for use up to 20 SourceFiles.

If the control-key is a field on the controlling SourceFile, the named field must be in a record in the lowest
level of the SourceFile path hierarchy. Specifically, the record must be the last non-occurring record, or an
OCCURS 1 record that follows the last non-occurring record, as defined in the SourceFilePath.

Note that a CONTROLLED BY SourceFile can not have an Initial Prepass or an Initial Extract procedure,

nor can it have SortFields defined. (that is, commands that require a second pass of the data).

When a CONTROLLED BY SourceFile is used, you should check the SourceFile SYS-IO-STATUS, to
detect whether the access has been successful. Please refer to the section Procedural Commands (page 39) for

returned values of the SYS-IO-STATUS.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

Example 1: Controlling Database Access from an External File

Write a program that prints the order information for sales region 2 in the database for customers in the

CUSTOMER-CONTROL SourceFile.

Assume that the CUSTOMER-CONTROL file contains CUSTOMER-NUMBER-CONTROL values,
and that the CUSTSS01 subschema contains CUSTOMER, INVOICE, and ITEM records. CUSTOMER
is a CALC record whose storage-keyfield is CUSTOMER-NUMBER.

Program Code

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*"
SOURCEFILE CUSTOMER-CONTROL
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1

DBNAME WK-1DMSCUST

CONTROLLED BY CUSTOMER-CONTROL

KEY = CUSTOMER-NUMBER-CONTROL

PATH (CUSTOMER, INVOICE VIA CUST-INVOICE,

ITEM VIA INVOICE-ITEM)

REPORT 1

BEGIN RECORD CUSTOMER INPUT

IF SALES-REGION NE 2 EXCLUDE

BEGIN REPORT 1 INPUT

IF CUSTOMER SYS-PATH-COUNT EQ O -
PUT (bad control-key value detail line) -
EXIT

IF INVOICE SYS-PATH-COUNT EQ O -
PUT (no invoice data detail line) -
EXIT

IF ITEM SYS-PATH-COUNT EQ O -
PUT (no item data detail line) -
EXIT

PUT (Ffull data detail-line)

Discussion

MetaSuite reads the CUSTOMER-CONTROL SourceFile sequentially, and retrieves each CUSTOMER
record directly, with its related records. It uses the value of CUSTOMER-NUMBER-CONTROL (from the
CUSTOMER-CONTROL SourceFile) as the CALC key for the CUSTOMER record.

The CUSTOMER-CONTROL records can be in any sequence; they need not be sorted.

The record input procedure for the CUSTOMER record uses the EXCLUDE command to eliminate any
CUSTOMER records from sales regions other than 2. No INVOICE records are retrieved for eliminated
CUSTOMER records. All retrieved controlled sets are passed to report processing.

The report (or TargetFile) input procedure checks for the following conditions: a missing CUSTOMER
record (meaning that no CUSTOMER exists for a particular CUSTOMER-CONTROL-KEY value); a
CUSTOMER record that owns no INVOICE records; and an INVOICE record that owns no ITEM

records.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

The controlled sets available for report processing might be:

CUSTOMER-NUMBER

CONTROL CUSTOMER INVOICE ITEM
1620921286 1620921286 SC20221 CCC11111
DDD22221
DDD22225
SC20344 CCC11233

Al INVOICE and ITEM data for CUSTOMER 1620921286. If there are duplicate CUSTOMER records
(with the same key value), they would follow with their INVOICE and ITEM records.

2248374765 2248374765 SC41532 CCC22244

Example 2: Controlling Database Access from within the Database Itself

This example shows how to use the CONTROLLED BY option to retrieve database records, based on
CALC-key values stored in another record type in the same database.

Problem Statement

Produce a report that lists all customers and their invoices, along with the name of the salesperson that wrote
each invoice. Only process invoices written by salespeople in sales region 3.

Assume that the INVOICE record in the CUSTSS01 subschema has a field called INVOICE-WRITTEN-
BY, which is the CALC key of an associated SALESPERSON record defined in the same subschema.

Program Code

Use two SOURCEFILE commands for the CUSTSS01 subschema: one to access CUSTOMER and
INVOICE records, the other to access only SALESPERSON records. Use the PREFIX option to clarify
which entities are referenced by which FILE command.

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1-
FIELD WK-WRT-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1

DBNAME WK-1DMSCUST

PATH (CUSTOMER, INVOICE VIA CUST-INVOICE)
SOURCEFILE IDMSCUST PREFIX "WRT-" SCHEMA CUSTSCHM

VERSION 1 DBNAME WK-WRT-IDMSCUST

CONTROLLED BY IDMSCUST KEY = ORDER-WRITTEN-BY

PATH (WRT-SALESPERSON)
REPORT 1

BEGIN RECORD CUSTOMER INPUT

IF WRT-SALES-REGION NE 3 EXCLUDE

BEGIN REPORT 1 INPUT

IF INVOICE SYS-PATH-COUNT EQ O -
PUT (no invoice data detail line) -
EXIT

IF WRT-SALESPERSON SYS-PATH-COUNT EQ O -

6.4.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

PUT (no salesperson data detail line) -
EXIT
PUT (full data detail-line)

Discussion

The CUSTOMER record input procedure excludes records for regions other than 3. MetaSuite does not build
controlled sets for the unwanted sales regions.

The report input procedure checks for the following conditions: a missing INVOICE record (that is, a
customer with no stored invoice information), and a missing SALESPERSON record (which means that the
ORDER-WRITTEN-BY information is incorrect).

The procedural code is the same as if there were a link between INVOICE and SALESPERSON (and they
were included together in the PATH specification)

Procedural Commands

Procedural commands tell MetaSuite what, if any, special processing is to be performed. Procedural code for a
program that accesses a CA-IDMS database can include any of the procedural commands described in the
MetaMap Manager User Guide. In certain cases, these commands differ in their use with CA-IDMS
SourceFiles, as described below.

Checking the Return Status
To check the status information returned to MetaSuite by CA-IDMS or returned by a MetaSuite DML

command, reference the following system fields:

SourceFile-name CA-IDMS status code returned from the last request to CA-IDMS, using the
SYS-INTERNAL-STATUS subschema specified by the DBNAME of the SourceFile.

SourceFile-name I/O status code that you can check using one of the following constants:
SYS-IO-STATUS SYS-OK indicates that a CA-IDMS status code of "0000" was returned, and

that the input record was successfully validated by MetaSuite. SYS-NOT-
RELATED indicates that the IF MEMBER command returns that the current
record is not a member of the set. SYS-ERROR indicates that a non-zero
CA-IDMS status code was returned, or that an input validation failed for a
successfully obtained record. In the case of a validation error, the
SourceFile-name SYS-INTERNAL-STATUS contains zeroes, and the data in
the record fields is unpredictable. SYS-EOF indicates that a HALT
SOURCEFILE command has been executed for the named SourceFile.

SYS-RECORD Name of the record most recently obtained. When you use the MetaSuite
DML commands to obtain a member record in a multi-member set using a
form of the IDMS OBTAIN command that does not specify a record name,
reference SYS-RECORD for the name of the record obtained.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

6.5. Command Summary

The MetaSuite commands used to access a CA-IDMS database are summarized below, then discussed

individually:

EXCLUDE Bypass processing of the current record and exit from the
current procedure. You can exclude the current record (no
subordinate records will be retrieved), the current path, or
the current path from a controlling SourceFile.

GET Read records from the database.

HALT ALL Stop all processing.

HALT SOURCEFILE Stop processing of one or more SourceFiles.

ACCEPT FROM CURRENCY Return the Db-key for the current record.

ACCEPT FROM OWNER CURRENCY Return the Db-key of the owner record, related to the
current record.

RELEASE Release data to the intermediate sort or extract SourceFile
(in a SourceFile initial procedure), or to the report (or
TargetFile) processing logic (in a SourceFile input
procedure).

START Position a SourceFile at a particular record before

beginning access.

6.6. EXCLUDE
The following describes the EXCLUDE command and its use in accessing CA-IDMS databases.

Command Syntax

EXCLUDE [record-name | SourceFile-name]

Usage

The EXCLUDE command is used within a procedure, to bypass processing of the current record, or any
specified record of the SourceFile. This command operates a described in the MezaMap Manager User Guide,
except as noted below.

For a non-MANUAL SourceFile (that is, SOURCEFILE statement does not include the MANUAL
option), when an EXCLUDE command is processed within a SourceFile initial procedure for a SORT,
EXTRACT or PREPASS, or within a SourceFile input procedure, the procedure is exited (and the record is
bypassed). If the SourceFile has been HALTed, MetaSuite terminates the processing for the SourceFile. If the
SourceFile has not been HALTed, MetaSuite executes the path-building code for the SourceFile, then re-
executes the procedure, beginning with the first command. When the end-of-file condition is obtained,
MetaSuite terminates processing for the SourceFile.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

For a MANUAL subschema, when an EXCLUDE command is processed within a SourceFile initial
procedure for a SORT, EXTRACT or PREPASS, or within a SourceFile input procedure where no
SourceFile initial procedure for a SORT, EXTRACT or PREPASS has been previously defined, the procedure
is exited. If the SourceFile has been HALTed, MetaSuite terminates the processing for the SourceFile. If the
SourceFile has not been HALTed, MetaSuite re-executes the procedure, beginning with the first command.

Note that an EXCLUDE command within a SourceFile input procedure, that follows a SourceFile initial
procedure for a SORT or EXTRACT, performs the same as for a SourceFile input procedure for a non-
MANUAL subschema.

When an EXCLUDE command is processed within a record input procedure for a MANUAL SourceFile,
MetaSuite exits the procedure.

Bypassing Processing for a Record

The EXCLUDE command is most useful in a record input procedure for a multi-record SourceFile path. In
this case, you can use the EXCLUDE command, without the record-name or SourceFile-name options, to
bypass processing for a record before any lower-level records are read into the path. Processing time is
improved, because the overhead of constructing unwanted paths of records is eliminated.

We recommend that you use the EXCLUDE command in a record input procedure any time you want to
bypass processing for a record based on information in that record or a higher-level record in the path.

For example, assume that a program contains the following commands:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*"
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
DBNAME WK-1DMSCUST
PATH (CUSTOMER, INVOICE VIA CUST-INVOICE)
REPORT 1
DETAIL 1 (CUST-NUMBER SHORT, INVOICE-NUMBER)

The following report might be produced. The path number for each detail line is shown to the right.

cusT INVOICE
NUMBER NUMBER (path number)
162092128 SC20221 @)

SC20344 &)

SC39374 A3
207384949 SC49483 4)

SC25342 ()

SC47365 (6)
299430123 SC36254 (@)

SC41092 ')
303300928 SC20982 ')

Nine paths are constructed from the CA-IDMS database records accessed.

To bypass any customer whose account number begins with the character "2", you would add the following
record input procedure to the program:

BEGIN RECORD CUSTOMER INPUT
IF CUST-NUMBER IR ("2000000000" TO "2999999999") -

EXCLUDE
The report generated would contain only the information shown above in paths 1, 2, 3, and 9. MetaSuite
would not read the INVOICE records shown in paths 4 through 8, reducing the number of database access
requests by five.

If the decision to bypass processing for a record is based on information in other records in a path, use the
EXCLUDE command in a SourceFile initial or SourceFile input procedure, as described next.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

Bypassing Paths of Records

record-name

Optional and applicable only in SourceFile initial or SourceFile input procedures. The record-name option is
used when a PATH of records is being accessed, to identify the specific record type in the path in which you
are no longer interested. Record-name must be the name of a record specified in the PATH specification for
the SourceFile.

The system skips occurrences of any other record types until the next occurrence of the named (excluded)
record is encountered. Processing time is improved, because the overhead of constructing unwanted paths of
records is eliminated.

For example, assume that a program contains the same SOURCEFILE, REPORT, and DETAIL commands
shown above, under "Bypassing Processing for a Record". Also assume that the same report shown above, with
path numbers indicated, might be produced.

To bypass only customers that have an account number beginning with the character "2" and an invoice whose
invoice number begins with the characters "SC2", you would add the following SourceFile input procedure to
the program:

BEGIN SOURCEFILE IDMSCUST INPUT

IF CUST-NUMBER IR (2000000000 TO "2999999999") -
AND INVOICE-NUMBER IR ("SC20000" TO "SC299997) -
EXCLUDE CUSTOMER

The report generated would contain only the information shown above in paths 1, 2, 3, 7, 8, and 9. MetaSuite
would build paths 4, 5, and 6, but exclude them from processing.

Bypassing CONTROLLED BY Records

SourceFile-name
Optional, and applicable only on a CONTROLLED BY SourceFile and only in SourceFile input procedures.

The SourceFile-name option is used to identify the controlling SourceFile data in which you are not
interested. SourceFile-name is the name of a controlling SourceFile (defined through the CONTROLLED
BY option of the SOURCEFILE command).

For example, assume that a program contained the following code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*"
FIELD WK-WRT-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
DBNAME WK-1DMSCUST
PATH (CUSTOMER, INVOICE VIA CUST-INVOICE)
SOURCEFILE IDMSCUST PREFIX "WRT-" SCHEMA CUSTSCHM
VERSION 1 DBNAME WK-WRT-I1DMSCUST
PATH (WRT-SALESPERSON)
CONTROLLED BY IDMSCUST KEY = ORDER-WRITTEN-BY
REPORT 1
DETAIL 1 (CUSTOMER-NUMBER SHORT, INVOICE-NUMBER, -
WRT-SALES-REGION, WRT-SALESPERSON)

The following report might be produced. The controlled set number for each detail line is shown to the right.

CUST INVOICE WRT
NUMBER NUMBER SALESPERSON (set number)
**khkkxhkk Bk o R e e T T
162092128 SC20221 JONES ¢y
SC20344 BLACK @)

SC39374 REYES ©))

6.7.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

207384949 SC49483 CHANG (@)
SC25342 SMITH %)
SC47365 KELLY (6)
299430123 SC36254 GABLE a
SC41092 HERON (3)
303300928 SC20982 HAMON (©))

Nine controlled sets were constructed from the CA-IDMS database records accessed.

If you wanted to process salespersons from the Southwest region only, you could add the following SourceFile
input procedure code:

BEGIN SOURCEFILE WRT-1DMSCUST INPUT
IF WRT-SALES-REGION NE 3 -
EXCLUDE 1DMSCUST

This procedure checks the sales-region value in the SALESPERSON record, and if it is not the desired
regions, excludes the current records from the higher-level IDMSCUST SourceFile from processing.
MetaSuite retrieves the next INVOICE record, which in turn causes the lower-level (WRT-IDMSCUST)
SourceFile processing to retrieve a new SALESPERSON record. The report output would include only the

sales persons from region 3.

EXIT
The following describes the £XI7" command and its use in accessing CA-IDMS databases.

Command Syntax

EXIT

Usage
The EXIT command leaves the current procedure and returns to the "calling" procedure. This command

operates as described in the MetaMap Manager User Guide, except as detailed below.
For a MANUAL SourceFile, EXIT processing is the same as for a non-MANUAL SourceFile, except that:

+ If the SourceFile initial procedure defines a SORT or EXTRACT, and it contains:

- No RELEASE command, MetaSuite releases a record to the sort or extract SourceFile that contains
the current values of all referenced fields from the MANUAL SourceFile, as well as any necessary sort-
key values, when it executes an EXIT command.

- One or more RELEASE commands, MetaSuite does not release a record to the sort or extract
SourceFile when it executes an EXIT command.

If processing for the SourceFile has not been HALTed, processing continues at the first command of the
SourceFile initial procedure. If processing for the SourceFile has been HALTed, processing terminates.

+ Ifthe SourceFile initial procedure does not include a SORT or EXTRACT command, and the SourceFile

input procedure includes an EXIT command and it contains:

- No RELEASE command, MetaSuite executes the report input logic when it executes an EXIT
command.

- One or more RELEASE commands, MetaSuite does not execute the report input logic when it
executes the EXIT command.

If processing for the SourceFile has not been HALTed, processing continues at the first command of the
SourceFile input procedure. If processing for the SourceFile has been HALTed, processing terminates.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

6.8. GET

The following describes the GET command and its use in accessing CA-IDMS databases.

Command Syntax

GET {record-name | SourceFile-name}
[KEY = keyfield-value]

Usage
The GET command is used to read records in a CA-IDMS database from within procedural code.
Except as described below, the options of the GET command, when used with a CA-IDMS database, are the

same as for non-database SourceFiles.

Identifying the Record(s) to be Read

{record-name | SourceFile-name}
Required. You must specify either the SourceFile-name or the entry record name from the PATH option.

Specifying the Access Key Value

KEY = keyfield-value

Optional. The KEY option specifies that MetaSuite is to retrieve the record(s) based on a keyfield value.
Keyfield-value must be a literal or the name of a field of the same general data type (alphanumeric or numeric)
as the access keyfield of the record to be obtained.

If the GET command names a record, it must be a CALC or indexed record. If the GET command names a
SourceFile, the entry record in the SourceFilePath must be a CALC or indexed record. In the case of an
indexed entry record, the VIA option must be included in the PATH specification, to name the index.
Keyfield-value is the CALC-key or index-field-name value, as appropriate.

Combining SOURCEFILE and GET Command Syntax Options

The processing performed by MetaSuite for a GET command depends on the combination of
SOURCEFILE and GET command options specified for the CA-IDMS SourceFile being accessed, as

summarized below.

NO NO The next occurrence of the entry record, as stored in the database. The path is
refilled.

NO YES The next occurrence of the entry record in index set sequence. The path is
refilled.

YES NO The (CALC) entry record occurrence containing the specified key value in its

storage-keyfield. The path is refilled.

YES YES The entry record occurrence containing the specified key value in its index-
name-field. The path is refilled.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

Example 1: Retrieving a CALC Record

The following code uses the GET command to retrieve a CALC record, using a CALC-key value:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1"
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1

DBNAME WK- IDMSCUST

CONTROLLED

PATH (CUSTOMER)

GET CUSTOMER KEY = "2903837698"
IF IDMSCUST SYS-10-STATUS EQ SYS-ERROR -
CUST-NAME = *NOT FOUND*®

The CUSTOMER record was defined to the dictionary with CUST-NUMBER, a 10-character alphanumeric
field, specified as the storage-keyfield.

If the CUSTOMER record with the desired storage-key is not found in the database, the name prints as
'NOT FOUND'.

Example 2: Retrieving an Indexed Record

The following code uses the GET command to retrieve a CUSTOMER record, using the index IX-CUST-
NAME:

FIELD WK-1DMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1*"
SOURCEFILE 1DMSCUST SCHEMA CUSTSCHM VERSION 1

DBNAME WK-IDMSCUST

PATH (CUSTOMER VIA 1X-CUST-NAME)

GET CUSTOMER KEY = "HUDSON RIVER SPRINGS*
IF IDMSCUST SYS-INTERNAL-STATUS EQ "0326" -
CUST-NAME = *NOT FOUND*®

If the CUSTOMER record is not found, NOT FOUND' appears in the name field.

Example 3: Retrieving a Path of Records

The following code uses the GET command to retrieve a path of records for the IDMSCUST SourceFile:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL "CUSTSSO1-
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
DBNAME WK-1DMSCUST
CONTROLLED
PATH (CUSTOMER, INVOICE VIA CUST-INVOICE,
ITEM VIA INVOICE-ITEM OCCURS 45)

GET CUSTOMER KEY = "2903837698"
IF IDMSCUST SYS-10-STATUS EQ SYS-ERROR -
CUST-NAME = *NOT FOUND*®

6.9.

6.10.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

This GET command retrieves the same entry record as the first example, as well as the first INVOICE record
tor that CUSTOMER and up to 45 ITEM records (beginning with the first record) for that INVOICE. The
number of ITEM records actually retrieved is in the system field, ITEM SYS-PATH-COUNT, following the

execution of each GET command.

HALT ALL
The following describes the HALT ALL command and its use in accessing CA-IDMS databases.

Command Syntax

HALT ALL

Usage

The HALT ALL command stops all processing. This command operates identically to the HALT ALL
command described in the MezaMap Manager User Guide, except that it also issues a FINISH request to the
CA-IDMS database system for all subschemas defined by the SourceFiles currently in use.

HALT SOURCEFILE
The following describes the HALT SOURCEFILE command and its use in accessing CA-IDMS databases.

Command Syntax

HALT SOURCEFILE [(SourceFile-name,...)

Usage

The HALT SOURCEFILE command halts the processing of one or more SourceFiles. This command
operates identically to the HALT SOURCEFILE command described in the MetaMap Manager User Guide,
except that MetaSuite issues a FINISH request to CA-IDMS for the subschemas defined by the SourceFiles.

Identifying the SourceFile(s) to Be Halted

(SourceFile-name,...)

Optional. SourceFile-name identifies the SourceFile whose processing is being halted. It must specify a
SourceFile that does not include the CONTROLLED option.

If SourceFile-name is omitted from the command within a SourceFile procedure, it defaults to the SourceFile
within whose (SourceFile Initial or SourceFile Input) procedure the command is contained.

6.11.

6.12.

6.13.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

ACCEPT FROM CURRENCY

The following describes the IDMS DML ACCEPT FROM CURRENCY command and its use in accessing
CA-IDMS databases.

Command Syntax

EXEC-IDMS
ACCEPT field-name FROM record-name CURRENCY
END-EXEC

Usage

This CA-IDMS DML Command can be used on Automatic SourceFiles to obtain the DB-Key of the current
record being processed. Please refer to MetaSuite CA-IDMS DMI Commands (page 49) for further usage.

IDMS ACCEPT FROM SET

The following describes the IDMS DML ACCEPT FROM SET command and its use in accessing CA-
IDMS databases.

Command Syntax

EXEC-IDMS
ACCEPT field-name FROM set-name OWNER CURRENCY
END-EXEC

Usage

This CA-IDMS DML Command can be used on Automatic SourceFiles to obtain the DB-Key of the owner
within the specified set of the current record being processed. Please refer to the section MetaSuite CA-IDMS

DML Commands (page 49) for further usage.
RELEASE
The following describes the RELEASE command and its use in accessing CA-IDMS databases.

Command Syntax

RELEASE

Usage
Please refer to MetaSuite CA-IDMS DML Commands (page 49) for usage.

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) |

6.14. START
The following describes the SZ4RT command and its use in accessing CA-IDMS databases.

Command Syntax

START {record-name | SourceFile-name}
KEY = start-key

Usage
The START command is used to begin database access at a particular indexed record, by specifying a value for
the index-field-name for the record. In this way, you can bypass the preceding records in the index.

Be aware that it is very easy to put your program into an infinite loop through improper use of the START
command. See the discussion of the START command in the MetaMap Manager User Guide for more on this.

Identifying the Record or Subschema

{record-name | SourceFile-name}

Required. SourceFile-name or the entry record name from the PATH option may be specified. The entry
record must be indexed and include the VIA index-name option, to name the index you want to use.

Specifying the Starting Position

KEY = start-key

Required. The KEY option specifies the index key value less than or equal to the key value of the first record to
be processed. Start-key may be either a literal or the name of a field of the same general data type
(alphanumeric or numeric) as the index-field-name for the index to be used.

7.1.

7.2.

7.3.

CHAPTER 7

MetaSuite CA-IDMS DML
Commands

Overview

The MetaSuite DML commands, each enclosed between the keywords EXEC-IDMS and END-EXEC
(translated to IDMS in the MSL, MetaSuite Specification Language), allow you to access the database using
syntax that closely parallels CA-IDMS DML commands.

You can use the MetaSuite DML commands, in any type of procedure, for any CA-IDMS SourceFile that
includes the MANUAL specification. An exception is if the SourceFile initial procedure for a MANUAL
SourceFile contains the SORT or EXTRACT command. In this case, you can use these commands only
within that SourceFile initial procedure.

When using the CA-IDMS OBTAIN commands, be aware of the following considerations:

* Your procedure logic must ensure the appropriate currencies within the database.

If you code a CA-IDMS OBTAIN command for a SourceFile whose MANUAL specification does not
include the CONTROLLED option, you must include a HALT command at the appropriate processing
point. If you do not include a HALT command, a processing loop can occur. MetaSuite does not verify that

the HALT command is coded in the program.

Checking the Return Status

To check the status information returned by a MetaSuite DML command, reference the SourceFile-name
SYS-INTERNAL-STATUS, SourceFile-name SYS-IO-STATUS, and SYS-RECORD system fields, as

described in the previous chapter.

Command Summary

The MetaSuite DML commands used to access a CA-IDMS database are summarized below, then discussed
individually:

ACCEPT field-name FROM CURRENCY Return the Db-key for the current record of a specified type
or the current record in a specified set.

ACCEPT field-name FROM set-name Return the Db-key of the next, prior, or owner record, related
to the current record of a specified set.

7.4.

METASUITE CA-IDMS DML COMMANDS |

IF Test for the presence of member records in a set, and
determine whether a record is a member of a set.

OBTAIN DB KEY Obtain a record directly, using a Db-key value.

OBTAIN CURRENCY Obtain the current record of a specified type or within a
specified set.

OBTAIN WITHIN set Obtain a record in a named set.

OBTAIN WITHIN area Obtain a record in a named area.

OBTAIN OWNER Obtain the owner record of a named set.

OBTAIN CALC/DUPLICATE Obtain a CALC record, using its CALC-key value.

OBTAIN WITHIN set USING sort-key Obtain a record in a sorted set, using its sort-key value.

RELEASE Release data to the intermediate sort or extract SourceFile

(in a SourceFile initial procedure), or to the report (or
TargetFile) processing logic (in a SourceFile input procedure).

In addition, note discussion in the previous chapter regarding the use of the following commands with a

MANUAL SourceFile:
« EXCLUDE
- EXIT

ACCEPT FROM CURRENCY

The following describes the ACCEPT FROM CURRENCY command and its use in accessing CA-IDMS

databases.

Command Syntax

EXEC- IDMS
ACCEPT field-name FROM {CURRENCY |
record-name CURRENCY |
set-name CURRENCY}
END-EXEC

Usage

This form of the ACCEPT command returns the Db-key for the current record for a SourceFile, or the
current record of a specified record type.

If the program accesses the database using multiple SourceFiles whose SOURCEFILE commands include the
MANUAL or CONTROLLED MANUAL option, it is recommended that you include the record-name or
set-name specification here.

Identifying the GlobalField for the Db-key

field-name

7.5.

METASUITE CA-IDMS DML COMMANDS |

Required. Field-name is the name of the 4-byte binary GlobalField in which you want the requested Db-key

returned.

Requesting the Db-key of the Current Record

CURRENCY
Optional. The CURRENCY option returns the Db-key of the current record for a SourceFile. The Db-key
returned depends on where the command is coded. If the command appears within:

* Any SourceFile procedure whose SOURCEFILE command includes the MANUAL option, the system
returns the Db-key for the current record for the SourceFile.

* Any other procedure type, the system determines the first SOURCEFILE command that includes the
MANUAL or CONTROLLED MANUAL option, and returns the Db-key of the current record for that

SourceFile.

Specifying a Record Name

record-name CURRENCY

Optional. This option returns the Db-key of the current record of the type specified by record-name. If the
PREFIX option was specified on the SOURCEFILE command for the SourceFile that includes the record

type, you must include the prefix in the record name.

For example, to request that the Db-key of the current CUSTOMER record be returned in the field CUST-
DB-KEY, you would code:

EXEC-1DMS ACCEPT CUST-DB-KEY FROM CUSTOMER CURRENCY END-EXEC

Specifying a Set Name

set-name CURRENCY

Optional. The option returns the Db-key of the current record for the set specified by set-name. If the
PREFIX option was specified on the FILE command for the subschema that includes the set, you must
include the prefix in the set name.

For example, to request that the Db-key of the current record for the CUST-SALES set be returned in the
field CUST-SALES-KEY, you would code:

EXEC-1DMS ACCEPT CUST-SALES-KEY FROM CUST-SALES CURRENCY END-EXEC

ACCEPT FROM SET
The following describes the ACCEPT FROM SET command and its use in accessing CA-IDMS databases.

Command Syntax

EXEC-IDMS
ACCEPT field-name FROM set-name
{NEXT | PRIOR | OWNER} CURRENCY
END-EXEC

7.6.

METASUITE CA-IDMS DML COMMANDS |

Usage

This form of the ACCEPT command returns the Db-key of the next, prior, or owner record, relative to the
current record of a specified set.

Identifying the GlobalField for the Db-key

field-name
Required. Field-name is the name of the 4-byte binary GlobalField in which you want the requested Db-key

returned.

Identifying the Set

FROM set-name

Required. Sez-name is the name of the set that you want processed. If the PREFIX option was specified on the
SOURCEFILE command for the SourceFile that includes the set, you must include the prefix in the set

name.

Specifying the Record

{NEXT | PRIOR | OWNER} CURRENCY

Required. NEXT returns the Db-key for the next record in the set specified by set-name. PRIOR returns the
Db-key for the prior record in the specified set. OWNER returns the Db-key for the owner record in the
specified set.

IF MEMBER

The following describes the IF' MEMBER command and its use in accessing CA-IDMS databases.

Command Syntax

EXEC-I1DMS

IF {[NOT] set-name MEMBER |
set-name IS [NOT] EMPTY}
END-EXEC

Usage
The IF command is used for either of the following purposes:
* To determine whether a record is a member of an optional set.

* To determine whether there are member records in an optional set.

To check the results of an IF command, use the MetaSuite status code returned by the command in
SourceFile-name SYS-IO-STATUS or the CA-IDMS status code returned in SourceFile-name SYS-
INTERNAL-STATUS, as described for each command option. For information about CA-IDMS status
codes, see the CA-IDMS Programmer's Reference Guide - COBOL, " Computer Associates.

METASUITE CA-IDMS DML COMMANDS |

Testing a Record for Set Membership

[NOT] set-name MEMBER

Optional. This option determines whether or not the current record for a SourceFile is a member of the set
specified by set-name. The set named must be an optional set. If the PREFIX option was specified on the
SOURCEFILE command for the SourceFile that includes the set, you must include the prefix in the set

name.

The optional NOT specification is available for documentation purposes only. The processing for the
command is unaffected by inclusion of the NOT option.

The command returns a status code as follows:

SourceFile-name SourceFile-Name Meaning

SYS-IO-STATUS SYS-INTERNAL-STATUS

SYS-OK 0000 Record is a member of the set.
SYS-NOT-RELATED 1601 Record is not a member of the set.
SYS-ERROR 1606, 1608, or 1613 An error has occurred

For example, to test whether the current record is a member of the INVOICE-IREMARK set, code:

EXEC-1DMS 1F INVOICE-IREMARK MEMBER END-EXEC

Testing a Set for Member Records

set-name IS [NOT] EMPTY

Optional. This option determines whether or not the current owner of the set specified by set-name owns any
member records (that is, whether or not the set is empty). The set named must be an optional set. If the
PREFIX option was specified on the SOURCEFILE command for the SourceFile that includes the set, you
must include the prefix in the set name.

The optional NOT specification is available for documentation purposes only. The processing for the
command is unaffected by inclusion of the NOT option.

The command returns a status code as follows:

SourceFile-name SourceFile-name SYS- Meaning
SYS-IO-STATUS INTERNAL-STATUS

SYS-OK 0000 Set is empty.
SYS-ERROR 1601, 1606, 1608, or 1613 Set is not empty.

For example, to test whether the current INVOICE record owns any member IREMARK records in the
INVOICE-IREMARK set, code:

EXEC-IDMS IF INVOICE-IREMARK 1S EMPTY END-EXEC

IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

7.7.

7.8.

METASUITE CA-IDMS DML COMMANDS |

OBTAIN DB-KEY IS
The following describes the OBTAIN DB-KEY IS command and its use in accessing CA-IDMS databases.

Command Syntax

EXEC-IDMS
OBTAIN record-name DB-KEY IS field-name
END-EXEC

Usage
This for of the OBTAIN command obtains a record directly, using a Db-key value.

Specifying a Record Name

record-name

Required. Record-name identifies the type of record you want to obtain. The record named must be included in
a SourceFile whose SOURCEFILE command specifies the CONTROLLED MANUAL options. If the
PREFIX option was specified on the SOURCEFILE command, you must include the prefix in the record

name.

Identifying the GlobalField for the Db-key

DB-KEY 1S field-name

Required. Field-name is the name of the field that contains the Db-key of the record you want to obtain. The
field named must be a 4-byte binary GlobalField.

OBTAIN CURRENT WITHIN SET

The following describes the OBTAIN CURRENT WITHIN SET command and its use in accessing CA-
IDMS databases.

Command Syntax

EXEC-1DMS
OBTAIN CURRENT [record-name | WITHIN set-name]
END-EXEC

Usage
This form of the OBTAIN command obtains the current record for a SourceFile, or the current record of a
specified record type or a specified set.

If the program accesses the database using multiple SourceFiles whose SOURCEFILE commands include the
CONTROLLED MANUAL option, it is recommended that you include the record-name or WITHIN sez-

name option in the command.

7.9.

METASUITE CA-IDMS DML COMMANDS |

Requesting the Current Record for a Subschema

Without the record-name or WITHIN set-name options, the command obtains the current record for a
SourceFile. The record obtained depends on where the command is coded. If the command appears within:

* Any SourceFile procedure for a SourceFile whose SOURCEFILE command includes the MANUAL

option, the system returns the current record for the SourceFile.

* Any other procedure type, the system determines the first SOURCEFILE command for a SourceFile that
includes the CONTROLLED MANUAL option, and returns the current record for that SourceFile.

Specifying a Record Name

record-name

Optional. This option returns the current record of the type specified by record-name. If the PREFIX option
was specified on the SOURCEFILE command for the SourceFile that includes the record type, you must

include the prefix in the record name.

For example, to request that the current CUSTOMER record be obtained, code:

EXEC-1DMS OBTAIN CURRENT CUSTOMER END-EXEC

Specifying a Set Name

WITHIN set-name

Optional. This option returns the current record for the set specified by set-name. If the PREFIX option was
specified on the SOURCEFILE command for the SourceFile that includes the set, you must include the

prefix in the set name.
For example, to request that the current record for the CUST-SALES set be obtained, code:

EXEC-1DMS OBTAIN CURRENT WITHIN CUST-SALES END-EXEC

OBTAIN WITHIN SET
The following describes the OBTAIN WITHIN SET command and its use in accessing CA-IDMS databases.

Command Syntax

EXEC-1DMS
OBTAIN {NEXT | PRIOR | LAST | FIRST | count-field}
[record-name] WITHIN set-name

END-EXEC

Usage

This form of the OBTAIN command obtains a record, relative to the current record in a named set.

Specifying the Relative Record to Obtain

{NEXT | PRIOR | LAST | FIRST | count-Ffield}

7.10.

METASUITE CA-IDMS DML COMMANDS |

Required. These specifications determine the record to be obtained, relative to the current record of the set.

NEXT, PRIOR, FIRST, and LAST obtain the next, prior, first, and last record in the set, respectively.

Count-field obtains the nth record in the set, relative to the current record, using the number contained in the
count field. Count-field must be a numeric field that contains a non-zero whole number. If the number is
positive, the system obtains the nth record in the "next" direction. If the number is negative, the system obtains
the nth record in the "prior" direction. If count-field contains a negative number, the set must contain prior
pointers.

Specifying a Record Name

record-name

Optional. Record-name identifies the type of record you want to obtain. If the PREFIX option was specified on
the SOURCEFILE command for the SourceFile that includes the record, you must include the prefix in the

record name.

Without the record-name option, the command obtains the next record in the set, regardless of its type. The
SYS-RECORD system GlobalField contains the name of the record obtained.

Specifying the Set

WITHIN set-name

Required. Sez-name is the name of the set from which you want to obtain a record. If the PREFIX option was
specified on the SOURCEFILE command for the SourceFile that includes the set, you must include the

prefix in the set name.

OBTAIN WITHIN AREA

The following describes the OBTAIN WITHIN AREA command and its use in accessing CA-IDMS
databases.

Command Syntax

EXEC-IDMS

OBTAIN {NEXT | PRIOR | LAST | FIRST | count-field}
record-name WITHIN area-name
END-EXEC

Usage

This form of the OBTAIN command obtains a record, relative to the current record in a named area.

Specifying the Relative Record to Obtain

{NEXT | PRIOR | LAST | FIRST | count-Ffield}

Required. These specifications determine the record to be obtained, relative to the current record of a specified
type in the area. NEXT, PRIOR, FIRST, and LAST obtain the next, prior, first, and last record, respectively,
of the type specified by record-name.

7.11.

METASUITE CA-IDMS DML COMMANDS |

Count-field obtains the nth record of the specified type, relative to the current specified record, using the
number contained in the count field. Count-field must be a numeric field that contains a non-zero whole
number. If the number is positive, the system obtains the nth record in the "next" direction. If the number is
negative, the system obtains the nth record in the "prior" direction. If count-field contains a negative number,
the set must contain prior pointers.

Specifying a Record Name

record-name

Required. Record-name identifies the type of record you want to obtain. If the PREFIX option was specified on
the SOURCEFILE command for the SourceFile that includes the record, you must include the prefix in the

record name.

Specifying the Area

WITHIN area-name

Required. Area-name is the name of the area from which you want to obtain a record. If the PREFIX option
was specified on the SOURCEFILE command for the SourceFile that includes the record, you must include
the prefix in the area name.

OBTAIN OWNER WITHIN SET

The following describes the OBTAIN OWNER WITHIN SET command and its use in accessing CA-IDMS
databases.

Command Syntax

EXEC-1DMS
OBTAIN OWNER WITHIN set-name
END-EXEC

Usage

This form of the OBTAIN command obtains the owner of the current occurrence of a specified set.

Specifying a Set Name

set-name

Required. Sez-name identifies the set for which you want to obtain the owner. If the PREFIX option was
specified on the SOURCEFILE command for the SourceFile that owns the set, you must include the prefix in
the set name.

7.12.

7.13.

METASUITE CA-IDMS DML COMMANDS |

OBTAIN RECORD-NAME
The following describes the OBTZAIN RECORD-NAME command and its use in accessing CA-IDMS

databases.

Command Syntax

EXEC-1DMS
OBTAIN {CALC | ANY | DUPLICATE} record-name
END-EXEC

Usage

This form of the OBTAIN command obtains a CALC record, using its CALC-key value. You must have
previously assigned the CALC-key value to the appropriate storage-keyfield for the record.

Specifying Which Record to Obtain

{CALC | ANY | DUPLICATE}

Required. These options determine the record to be obtained. CALC and ANY are synonymous and obtain
the first occurrence of the record type whose CALC key matches the value in the storage-keyfield for the
record type.

UPLICATE obtains the next record with the same CALC-key value as the current record of the specified
type. To use the DUPLICATE option, you must first obtain a record with the same CALC-key value, using
the CALC or ANY option.

Specifying a Record Name

record-name

Required. Record-name identifies the type of CALC record you want to obtain. If the PREFIX option was
specified on the SOURCEFILE command for the SourceFile that includes the record type, you must include

the prefix in the record name.

OBTAIN WITHIN SET USING SORT KEY

The following describes the OBTAIN WITHIN SET USING SORT KEY command and its use in accessing
CA-IDMS databases.

Command Syntax

EXEC-I1DMS
OBTAIN record-name WITHIN set-name [CURRENT]
USING sort-key

END-EXEC

Usage

This form of the OBTAIN command obtains a record in a sorted set, using its sort-key value.

7.14.

METASUITE CA-IDMS DML COMMANDS |

Specifying a Record Name

record-name

Required. Record-name identifies the type of record you want to obtain. If the PREFIX option was specified on
the SOURCEFILE command for the SourceFile that includes the record type, you must include the prefix in

the record name.

Specifying a Set Name

WITHIN set-name [CURRENT]

Required. Sez-name is the name of the set that you want to process. The set named must be a sorted set. If the
PREFIX option was specified on the SOURCEFILE command for the SourceFile that owns the set, you

must include the prefix in the set name.

Within the CURRENT option, the command begins the search for the record from the current record for the

set. Without this option, the command begins the search with the current owner record for the set.

Specifying the Sort-Key Value

USING sort-key

Required. Sorz-key is the sort-control field for the record. You must ensure that this field contains the sort-key
value of the record to be obtained, before using the command. Be aware that MetaSuite cannot verify the
named field as the sort-key field defined for the set.

If the PREFIX option was specified on the SOURCEFILE command for the SourceFile that owns the record

and set, you must include the prefix in the sort-key name.

RELEASE
The following describes the RELEASE command and its use in accessing CA-IDMS databases.

Command Syntax

RELEASE

Usage
The RELEASE command releases data from a MANUAL SourceFile to the intermediate sort or extract

SourceFile (in a SourceFile initial procedure), or to the report processing logic (in a SourceFile input
procedure). In the latter case, the data is processed for each requested report, in report number sequence.

You must include this command within either:
* A SourceFile initial procedure for a MANUAL SourceFile, or

* A SourceFile input procedure for a MANUAL SourceFile whose SourceFile initial procedure contains no

SORT or EXTRACT commands.

If you include one or more RELEASE commands within a procedure, the system releases the file data to the
intermediate file or report processing logic only when a RELEASE command is executed. If you do not
include a RELEASE command within a procedure, MetaSuite automatically releases the data at the end of
the procedure, or when an EXIT command is executed.

APPENDIX A

Appendix A - MetaStore Manager

A.1.

A.2.

Collect for CA-IDMS

Overview

This chapter introduces the Collect File functionality of the MetaStore Manager to capture CA-IDMS
definitions from IDD. You should be familiar with the CA-IDMS concepts presented in the section CA-
IDMS Concepts and Terminology (page 4) before reading this chapter.

The relationships between the basic MetaSuite and CA-IDMS terms are as follows:

MetaSuite and CA-IDMS Terms

File Schema

Record Record Type
Field Field

Index CA-IDMS Index
Link CA-IDMS set

IDMS SCHEMA

When starting the Collect File functionality of the MetaStore Manager, the option "IDMS Schema punch"
represents a possibility to transform CA-IDMS IDD definitions into MetaSuite format.

Source information

You will first need to produce a Schema punch from the CA-IDMS IDD. This can be done by the following
example JCL:

The input is an IDMS punch of your schema as a result of the following example JCL for z/OS:

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS |

//1DMSCHEM EXEC PGM=IDMSCHEM

//SYSCTL DD DSN=IDMS-SYSCTL-filename,DISP=SHR
//SYSUDUMP DD SYSOUT=R

//SYSLST DD SYSOUT=R

//SYSPCH DD SYSOUT=R

//SYSIPT DD *

SIGNON .. DICTNAME IS IDMS-DatabaseName

PUNCH SCHEMA NAME IS Schemaname VERSION HIGH
WITH AREAS

ALSO WITH RECORDS

ALSO WITH ELEMENTS

ALSO WITH DETAILS

ALSO WITH SETS

AS SYNTAX

The result of this JCL will need to be transferred to your workstation, so that it is available as source for
MetaStore Manager.

IDMS File Information

When starting the "IDMS Schema" collect option, you will need to specify the filename of the result of the
PUNCH IDMS.

During the capture of file definition, IDMS File Information will be asked. It consists of 3 types of

information:
* File Name

* Subschema Name

* Database Name

File Name

The Filename of the IDMS file as it will be stored in the MetaStore.

Subschema Name

The subschema name that will be accessed by default by the MetalMap Manager programs working on this
schema.

Database Name

The CA-IDMS database name that will be accessed by default by the MetaMap Manager programs working

on this schema.

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS |

Result

A dictionary file will be produced which represents the correct schema definition as stored in IDD.

Example

Consider the following CA-IDMS PUNCH for the schema IDMSSCHM:

ADD

SCHEMA NAME 1S CUSTSCHM VERSION 1S 1

MEMO DATE 1S 30/07/90

ASSIGN RECORD 1DS FROM 1001

ADD

AREA NAME IS CUST-AREA

ESTIMATED PAGES ARE O

ADD

RECORD NAME 1S CUSTOMER

RECORD ID IS 0611

LOCATION MODE IS CALC USING (CUST-NUMBER)
DUPLICATES ARE NOT ALLOWED

CALL WO2A0001 BEFORE STORE

CALL WO2A0001 BEFORE MODIFY
WITHIN AREA CUST-AREA OFFSET O PERCENT FOR 100 PERCENT

02 CUST-NUMBER
PICTURE IS X(10)
USAGE 1S DISPLAY

02 CUST-NAME
PICTURE IS X(20)
USAGE 1S DISPLAY

02 CUST-CITY
PICTURE IS X(15)
USAGE 1S DISPLAY
ADD
RECORD NAME IS INVOICE
RECORD ID IS 0620
LOCATION MODE 1S CALC USING (INVOICE-NUMBER)
CALL WO2A0001 BEFORE STORE
CALL WO2A0001 BEFORE MODIFY
WITHIN AREA CUST-AREA OFFSET O PERCENT FOR 100 PERCENT

02 INVOICE-NUMBER
PICTURE IS X(10)
USAGE 1S DISPLAY

02 INVOICE-DATE
PICTURE IS X(10)
USAGE 1S DISPLAY

ADD

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS |

RECORD NAME IS ITEM

RECORD 1D 1S 0621

LOCATION MODE 1S VIA INVOICE-ITEM SET

CALL WO2A0001 BEFORE STORE

CALL WO2A0001 BEFORE MODIFY

WITHIN AREA CUST-AREA OFFSET O PERCENT FOR 100 PERCENT

02 PRODUCT-NUMBER
PICTURE IS X(5)
USAGE 1S DISPLAY

02 PRODUCT-DESCRIPTION
PICTURE IS X(70)
USAGE 1S DISPLAY
ADD
RECORD NAME IS IREMARK
RECORD ID IS 0621
LOCATION MODE IS VIA INVOICE-1TEM SET
CALL WO2A0001 BEFORE STORE

CALL WO2A0001 BEFORE MODIFY
WITHIN AREA CUST-AREA OFFSET O PERCENT FOR 100 PERCENT

02 TEXT-REMARK

PICTURE IS X(100)

USAGE 1S DISPLAY
ADD
SET NAME IS IX-CUST-NAME
ORDER 1S SORTED
MODE 1S INDEX USING SYM-CUST-NAME
OWNER 1S SYSTEM

WITHIN AREA CUST-AREA OFFSET O PERCENT FOR 100 PERCENT
MEMBER IS CUSTOMER
INDEX DBKEY POSITION IS 5
OPTIONAL MANUAL
KEY 1S (

CUST-NAME ASCENDING)
DUPLICATES ARE NOT ALLOWED
UNCOMPRESSED
ADD
SET NAME IS CUST-INVOICE
ORDER 1S SORTED
MODE 1S CHAIN LINKED TO PRIOR
OWNER 1S CUSTOMER
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
MEMBER 1S INVOICE
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
LINKED TO OWNER
OWNER DBKEY POSITION IS 3
MANDATORY AUTOMATIC
KEY 1S (

INVOICE-NUMBER ASCENDING)

DUPLICATES ARE NOT ALLOWED

NATURAL SEQUENCE

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS |

ADD
SET NAME 1S INVOICE-ITEM
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS INVOICE
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
MEMBER 1S ITEM
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
LINKED TO OWNER
OWNER DBKEY POSITION IS 3
OPTIONAL AUTOMATIC
KEY 1S (
PRODUCT-NUMBER ASCENDING)
DUPLICATES ARE NOT ALLOWED
NATURAL SEQUENCE
ADD
SET NAME 1S INVOICE-IREMARK
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS INVOICE
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
MEMBER 1S IREMARK
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
LINKED TO OWNER
OWNER DBKEY POSITION IS 3
MANDATORY AUTOMATIC
KEY 1S (
TEXT-REMARK ASCENDING)
DUPLICATES ARE FIRST
NATURAL SEQUENCE

The resulting MDL commands will be:

ADD FILE IDMSCUST TYPE IDMS SCHEMA CUSTSCHM VERSION 1 DBNAME "CUSTSSO1*

ADD RECORD CUSTOMER OF IDMSCUST SIZE 45 STORAGE-KEY CUST-NUMBER STORAGE-AREA CUST-
AREA

ADD FIELD CUST-NUMBER OF CUSTOMER POSITION 1 SI1ZE 10 TYPE CHARACTER

ADD FIELD CUST-NAME OF CUSTOMER POSITION 11 SIZE 20 TYPE CHARACTER

ADD FIELD CUST-CITY OF CUSTOMER POSITION 31 SIZE 15 TYPE CHARACTER

ADD RECORD INVOICE OF IDMSCUST SIZE 20 STORAGE-KEY INVOICE-NUMBER STORAGE-AREA
CUST-AREA

ADD FIELD INVOICE-NUMBER OF INVOICE POSITION 1 SIZE 10 TYPE CHARACTER

ADD FIELD INVOICE-DATE OF INVOICE POSITION 11 SIZE 10 TYPE CHARACTER

ADD RECORD ITEM OF IDMSCUST SIZE 75 STORAGE-AREA CUST-AREA

ADD FIELD PRODUCT-NUMBER OF ITEM POSITION 1 SIZE 5 TYPE CHARACTER

ADD FIELD PRODUCT-DESCRIPTION OF ITEM POSITION 6 SIZE 70 TYPE CHARACTER

ADD RECORD IREMARK OF IDMSCUST SIZE 100 STORAGE-AREA CUST-AREA

ADD FIELD TEXT-REMARK OF IREMARK POSITION 1 SIZE 100 TYPE CHARACTER

ADD INDEX IX-CUST-NAME BASED ON CUST-NAME

ADD LINK CUST-INVOICE FROM CUSTOMER TO (INVOICE)

ADD LINK INVOICE-ITEM OPTIONAL FROM INVOICE TO (ITEM)

ADD LINK INVOICE-IREMARK FROM INVOICE TO (IREMARK)

A.3.

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS |
IDMS RECORD

When starting the Collect File functionality of the MetaStore Manager the option "IDMS Record punch”
represents a possibility to transform IDD record definitions into a MetaSuite definition.

Source information

You will first need to produce a Record punch from the CA-IDMS IDD. This can be done by the following
example JCL:

The input is an IDMS punch of your record as a result of the following example JCL for z/OS:

//RECCHEM EXEC PGM=RECSCHEM
//SYSCTL DD DSN=IDMS-SYSCTL-Ffilename,DISP=SHR
//SYSUDUMP DD SYSOUT=R
//SYSLST DD SYSOUT=R
//SYSPCH DD SYSOUT=R
//SYSIPT DD *
SIGNON .. DICTNAME IS IDMS-DatabaseName
SET OPTIONS FOR SESSION INPUT COLUMNS ARE 1 THRU 80.
PUNCH RECORD RecordName VERSION IS VersionNumber
WITH COBOL
ALSO WITH DETAILS
ALSO WITH SYNONYMS
AS SYNTAX.

The result of this JCL will need to be transferred to your workstation, so that it is available as source for
MetaStore Manager.

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS |
IDMS File Information

After starting the "IDMS Record punch" collect option and selecting the IDMS Record punch, the following

window will pop up.

Dictionary File [record] _txt] |
Prefix Dictionaty File Mame (far the ADD FILE statement)
I— I_ Irec:n:nru:ﬂ
—File Details
File Type ISequentiaI j
Records Max Sizge: |113 Format : IFixed j

Block Size | [T Spannied
Recording Mode ; INATNE vI Label : IStandard j

Key Field - [ane |

Code Cortral Takle Mame I

Databaze Mame : I

Remarks :

Ok Cancel |

Result

A MetaSuite file will be produced which represents the correct file definition as stored in IDD.

Example

Consider the following IDMS Record punch

ADD
RECORD NAME IS KXO001RS VERSION IS 1
DESCRIPTION 1S "Control and transformation of
date”
*4 RECORD LENGTH IS 113

RECORD NAME SYNONYM IS KXOOO1RS VERSION 1
SUFFIX 1S -KXO0001RS
COMMENTS

*+
*+

*+
*+

*+
*+

*+
*+

*+
*+

*+
*+

*+
*+

*+
*+

*+
*+

02

02

02

02

02

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS |

"Only returncode zero is ok"

INTERFACEELE

USAGE 1S DISPLAY
ELEMENT LENGTH IS 93
POSITION IS 1

03 RECID
PICTURE IS X(8)
USAGE 1S DISPLAY
ELEMENT LENGTH IS 8
POSITION IS 1

03 RETURNCODE
PICTURE 1S X
USAGE 1S DISPLAY
ELEMENT LENGTH IS 1
POSITION IS 9

03 MELDING
PICTURE IS X(80)
USAGE IS DISPLAY
ELEMENT LENGTH IS 80
POSITION IS 10

03 STUCOD
PICTURE IS X(04)
USAGE 1S DISPLAY
ELEMENT LENGTH IS 4
POSITION IS 90

DATUM

PICTURE IS X(10)
USAGE IS DISPLAY
ELEMENT LENGTH IS 10
POSITION IS 94

DATUMTYP

PICTURE 1S X

USAGE IS DISPLAY
ELEMENT LENGTH IS 1
POSITION IS 104

INDKEY

PICTURE 1S X

USAGE 1S DISPLAY
ELEMENT LENGTH IS 1
POSITION IS 105

DATUMUIT

PICTURE IS 9(8)
USAGE 1S DISPLAY
ELEMENT LENGTH IS 8
POSITION IS 106

APPENDIX B

Appendix B - Sample Programs

B.1. MDL data Samples

MDL definition of IDMS-SIMULATION-CARS

DELETE FILE ALL

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD

FILE IDMS-SIMULATION-CARS TYPE IDMS SCHEMA CARSCHEM VERSION 1 DBNAME "CARS*
RECORD CAR-TYPES#30288 SI1ZE 24 STORAGE-AREA CARS

FIELD CAR-TYPE-CODE#30290 POSITION 1 SIZE 4 TYPE ZONED UNSIGNED CODE

FIELD CAR-TYPE-NAME#30291 POSITION 5 SIZE 20 TYPE CHARACTER

RECORD CAR-SUBTYPES#30289 SIZE 34 STORAGE-AREA CARS

FIELD CAR-SUBTYPE-MAIN-CODE#30292 POSITION 1 SIZE 4 TYPE ZONED UNSIGNED CODE
FIELD CAR-SUBTYPE-SUB-CODE#30293 POSITION 5 SIZE 6 TYPE CHARACTER

FIELD CAR-SUBTYPE-BUILD-YEAR#30310 POSITION 11 SIZE 4 TYPE ZONED UNSIGNED
FIELD CAR-SUBTYPE-NAME#30294 POSITION 15 SIZE 20 TYPE CHARACTER

INDEX CAR-IX BASED ON CAR-TYPE-CODE#30290

LINK CAR-REL FROM CAR-TYPES#30288 TO (CAR-SUBTYPES#30289)

MDL definition of IDMS-SIMULATION-GARAGES

ADD
ADD

AGE-

ADD
ADD
ADD

AGE-

ADD
ADD
ADD
ADD
ADD
ADD

FILE IDMS-SIMULATION-GARAGES TYPE IDMS SCHEMA GARSCH VERSION 1 DBNAME "GARAGES*®
RECORD GARAGE-AREAS#30301 SIZE 24 STORAGE-KEY GARAGE-POSTAL-CODE#30303 STOR-
AREA GARAGES

FIELD GARAGE-POSTAL-CODE#30303 POSITION 1 SI1ZE 4 TYPE ZONED UNSIGNED CODE
FIELD GAR-COMUNITY#30304 POSITION 5 SIZE 20 TYPE ALPHABETIC

RECORD GARAGE-NAMES#30302 SIZE 32 STORAGE-KEY GARAGE-POSTAL-CODE#30306 STOR-
AREA GARAGES

FIELD GARAGE-POSTAL-CODE#30306 POSITION 1 SIZE 4 TYPE ZONED UNSIGNED

FIELD GARAGE-CODE#30307 POSITION 5 SIZE 4 TYPE CHARACTER

FIELD GARAGE-CAR-TYPE-CODE#30308 POSITION 9 SIZE 4 TYPE ZONED UNSIGNED CODE
FIELD GARAGE-NAME#30309 POSITION 13 SIZE 20 TYPE CHARACTER

INDEX GAR-IX BASED ON GARAGE-POSTAL-CODE#30303

LINK GAR-REL FROM GARAGE-AREAS#30301 TO (GARAGE-NAMES#30302)

B.2.

APPENDIX B - SAMPLE PROGRAMS |
Sample 1 - "Via Index"

FIELD W-CUR SIZE 4 TYPE BINARY
FIELD TO1-TOVI TYPE CHARACTER SIZE 56
FIELD WK-IDMS-SIMULATION-GARAGES TYPE CHARACTER SIZE 17 INITIAL "GARAGES®" PARAME-
TER
FIELD WK-1DMS-SIMULATION-CARS TYPE CHARACTER SIZE 17 INITIAL "CARS®" PARAMETER
REMARKS Dummy WorkField for TOTAL without ACCUM Fields
FIELD SYS-DUMMY TYPE ZONED SIZE 1
REMARKS Source: IDMS-SIMULATION-GARAGES
SOURCEFILE IDMS-SIMULATION-GARAGES -
SCHEMA GARSCH VERSION 1 DBNAME WK-I1DMS-SIMULATION-GARAGES -
PATH -
(_
GARAGE-NAMES#30302 -
)
REMARKS Source: IDMS-SIMULATION-CARS
SOURCEFILE IDMS-SIMULATION-CARS -
SCHEMA CARSCHEM VERSION 1 DBNAME WK-IDMS-SIMULATION-CARS -
CONTROLLED MANUAL
REMARKS REPORT O to write values of target groupby fields and program procedures

REPORT O
REMARKS IDMS-TEST-OBTAIN-VIA-1X (SEQUENTIAL)

TARGETFILE 1 SEQUENTIAL

TITLE O ("TO1-1DMS-TEST-OBTAIN-VIA-IX*)

DETAIL 1 RECORD "TOVI*® -
(-
GARAGE-POSTAL-CODE#30306, -
GARAGE-CODE#30307, -
GARAGE-NAME#30309, -
GARAGE-POSTAL-CODE#30306, -
CAR-TYPE-CODE#30290, -
CAR-TYPE-NAME#30291 -

)

BEGIN SOURCEFILE IDMS-SIMULATION-GARAGES INPUT
REMARKS FI1

BEGIN SOURCEFILE IDMS-SIMULATION-CARS INPUT

REMARKS FI2

CAR-SUBTYPE-MAIN-CODE#30292 SYS-RAW = GARAGE-CAR-TYPE-CODE#30308 SYS-RAW

IDMS OBTAIN FIRST CAR-SUBTYPES#30289 WITHIN CAR-REL

IDMS 1F CAR-REL MEMBER

IF IDMS-SIMULATION-CARS SYS-10-STATUS EQ SYS-NOT-RELATED -
EXCLUDE

IDMS ACCEPT W-CUR FROM CAR-SUBTYPES#30289 CURRENCY

DEBUG “current car-subtypes key is # * (W-CUR)

IDMS OBTAIN OWNER WITHIN CAR-REL

IDMS 1F CAR-REL MEMBER

IF IDMS-SIMULATION-CARS SYS-10-STATUS EQ SYS-NOT-RELATED -
DEBUG “record excluded * -
EXCLUDE

IDMS ACCEPT W-CUR FROM CAR-TYPES#30288 CURRENCY

DEBUG “current car-types key is # = (W-CUR)

BEGIN REPORT O INITIAL

APPENDIX B - SAMPLE PROGRAMS |

SYS-APPLICATION = "p3127a*
BEGIN REPORT O EOJ
Sample 2. "Controlled-by (manual)™
REMARKS SPECIAL 1DMS-DBMS WORKFIELD(S)
FIELD WK-IDMS-SIMULATION-GARAGES TYPE CHARACTER SIZE 17 INITIAL "GARAGES®" PARAME-
TER
FIELD WK-IDMS-SIMULATION-CARS TYPE CHARACTER SIZE 17 INITIAL "CARS® PARAMETER
REMARKS Dummy WorkField for TOTAL without ACCUM Fields
FIELD SYS-DUMMY TYPE ZONED SIZE 1
REMARKS Source: IDMS-SIMULATION-GARAGES
SOURCEFILE IDMS-SIMULATION-GARAGES -
SCHEMA GARSCH VERSION 1 DBNAME WK-I1DMS-SIMULATION-GARAGES -
PATH -
(-
GARAGE-AREAS#30301, -
GARAGE-NAMES#30302 -
VIA GAR-REL -
)
REMARKS Source: IDMS-SIMULATION-CARS
SOURCEFILE IDMS-SIMULATION-CARS -
SCHEMA CARSCHEM VERSION 1 DBNAME WK-IDMS-SIMULATION-CARS -
CONTROLLED BY IDMS-SIMULATION-GARAGES -
KEY GARAGE-CAR-TYPE-CODE#30308 -
PATH -
(-
CAR-TYPES#30288 -
VIA CAR-IX -

)
REMARKS REPORT O to write values of target groupby fields and program procedures

REPORT O
REMARKS Car-Garage-report (REPORT)

REPORT 1 -

PAGE (55, 132)

TITLE O ("Garages and cars"®)

DETAIL 1 -

(_
GARAGE-POSTAL-CODE#30303, -
GAR-COMUNITY#30304, -
GARAGE-POSTAL-CODE#30306, -
GARAGE-CODE#30307, -
GARAGE-CAR-TYPE-CODE#30308, -
GARAGE-NAME#30309, -
CAR-TYPE-CODE#30290, -
CAR-TYPE-NAME#30291 -

)

BEGIN REPORT O INITIAL

SYS-APPLICATION = "P3134A*"

BEGIN REPORT O EOJ

B.3.

APPENDIX B - SAMPLE PROGRAMS |
Sample 2 - "OBTAIN"

FIELD TO1-TO-rec TYPE CHARACTER SIZE 52
FIELD WK-IDMS-SIMULATION-GARAGES TYPE CHARACTER SIZE 17 INITIAL "GARAGES®" PARAME-
TER
FIELD SYS-DUMMY TYPE ZONED SIZE 1
REMARKS Source: 1DMS-SIMULATION-GARAGES
SOURCEFILE IDMS-SIMULATION-GARAGES -
SCHEMA GARSCH VERSION 1 DBNAME WK-1DMS-SIMULATION-GARAGES -
CONTROLLED MANUAL
REMARKS No automatic file specified
SOURCEFILE SYS-DUMMY-FILE

REMARKS REPORT O to write values of target groupby fields and program procedures
REPORT O
REMARKS test-obtain (HTML)
TARGETFILE 1 DELIMITED OUTPUT-CONTROL HTM
TITLE O ("TOl-test-obtain®)
DETAIL 1 RECORD *TO-rec™ -
(_
GARAGE-CODE#30307, -
GARAGE-CAR-TYPE-CODE#30308, -
GARAGE-NAME#30309, -
GARAGE-POSTAL-CODE#30303, -
GAR-COMUNITY#30304 -
)
BEGIN SOURCEFILE IDMS-SIMULATION-GARAGES INPUT
GARAGE-POSTAL-CODE#30306 = 3118
IDMS OBTAIN GARAGE-NAMES#30302 WITHIN GAR-REL USING GARAGE-POSTAL-CODE#30306
IF IDMS-SIMULATION-GARAGES SYS-10-STATUS EQ SYS-ERROR -
DEBUG "OBTAIN FIRST NOT SUCCESSFULL" -
HALT ALL -
EXIT
IDMS OBTAIN OWNER WITHIN GAR-REL
IF IDMS-SIMULATION-GARAGES SYS-10-STATUS EQ SYS-ERROR -
OR I1DMS-SIMULATION-GARAGES SYS-10-STATUS EQ SYS-NOT-RELATED -
DEBUG "OBTAIN OWNER NOT SUCCESSFULL" -
HALT ALL -
EXIT
BEGIN REPORT O INITIAL
SYS-APPLICATION = "P3146A*
BEGIN REPORT O EOJ
BEGIN TARGETFILE 1 INPUT
IF IDMS-SIMULATION-GARAGES SYS-INPUT-COUNT GT 2 -
HALT ALL

APPENDIX B - SAMPLE PROGRAMS |
B.4. Sample 3 - "Controlled by work field"

REMARKS Global WorkFields without LIKE
FIELD WORK-CAR-TYPE-CODE SIZE 4 TYPE ZONED UNSIGNED
REMARKS Global WorkFields for TargetFields
FIELD TOl-Cra-Garage-rec TYPE CHARACTER SIZE 114
REMARKS SPECIAL 1DMS-DBMS WORKFIELD(S)
FIELD WK-IDMS-SIMULATION-GARAGES TYPE CHARACTER SIZE 17 INITIAL "GARAGES®" PARAME-
TER
FIELD WK-1DMS-SIMULATION-CARS TYPE CHARACTER SIZE 17 INITIAL "CARS" PARAMETER
REMARKS Dummy WorkField for TOTAL without ACCUM Fields
FIELD SYS-DUMMY TYPE ZONED SIZE 1
REMARKS Source: IDMS-SIMULATION-GARAGES
SOURCEFILE IDMS-SIMULATION-GARAGES -
SCHEMA GARSCH VERSION 1 DBNAME WK-I1DMS-SIMULATION-GARAGES -
PATH -
(-
GARAGE-AREAS#30301, -
GARAGE-NAMES#30302 -
VIA GAR-REL -
)
REMARKS Source: I1DMS-SIMULATION-CARS
SOURCEFILE 1DMS-SIMULATION-CARS -
SCHEMA CARSCHEM VERSION 1 DBNAME WK-1DMS-SIMULATION-CARS -
CONTROLLED BY IDMS-SIMULATION-GARAGES -
KEY WORK-CAR-TYPE-CODE -
PATH -
(-
CAR-TYPES#30288 -
VIA CAR-IX, -
CAR-SUBTYPES#30289 -
VIA CAR-REL -

)
REMARKS REPORT O to write values of target groupby fields and program procedures

REPORT O
REMARKS Car-Garage-report (REPORT)

REPORT 1 -

PAGE (55, 132)

TITLE O ("Garages and cars"®)

DETAIL 1 -

(_

GARAGE-POSTAL-CODE#30303, -
GAR-COMUNITY#30304, -
GARAGE-POSTAL-CODE#30306, -
GARAGE-CODE#30307, -
GARAGE-CAR-TYPE-CODE#30308, -
GARAGE-NAME#30309, -

CAR-TYPE-CODE#30290, -
CAR-TYPE-NAME#30291, -
CAR-SUBTYPE-MAIN-CODE#30292, -
CAR-SUBTYPE-SUB-CODE#30293, -
CAR-SUBTYPE-BUILD-YEAR#30310, -
CAR-SUBTYPE-NAME#30294 -

)

BEGIN SOURCEFILE I1DMS-SIMULATION-GARAGES INPUT
IF GARAGE-NAMES#30302 SYS-PATH-COUNT EQ O -

APPENDIX B - SAMPLE PROGRAMS |

WORK-CAR-TYPE-CODE SYS-STATUS = SYS-NULL-VALUE -
ELSE -
WORK-CAR-TYPE-CODE = GARAGE-CAR-TYPE-CODE#30308

BEGIN REPORT O INITIAL
SYS-APPLICATION = "P3161A*"
BEGIN REPORT O EOJ

	IDMS File Access Guide
	Table of Contents
	About This Manual
	1.1. Prerequisites
	1.2. Related Publications

	MetaSuite File Access Overview
	CA-IDMS Concepts and Terminology
	3.1. Overview
	3.2. CA-IDMS data structures
	3.3. Records
	Location Modes
	Indexes
	Data Structure Diagram
	Sets
	Set Linkage
	Set Order
	Data Structures
	Hierarchical Structure
	Network Structure

	3.4. Accessing Information
	Integrated Data Dictionary (IDD)
	Schema
	Subschema
	Run-Unit
	Path
	Currencies

	Using MetaSuite with a CA-IDMS database
	4.1. MetaSuite and CA-IDMS Terminology
	File
	Record
	Field
	Index
	Link
	Data Definition Facilities

	4.2. Programming Overview
	CA-IDMS SourceFile path
	Extended MetaSuite Facilities
	What the Program Sees
	Multiple Databases

	Defining a CA-IDMS Database
	5.1. Overview
	5.2. Defining Databases Manually
	Commands
	MetaSuite Commands that Define CA-IDMS Data Structures

	5.3. FILE
	Format
	File-name
	Schema-name
	Schema-version
	Subschema-name
	Business-rule
	Example

	5.4. RECORD
	Format
	Usage
	Record-name
	File-name
	Maximum-record-size
	Storage-keyfield
	Area-name
	Business-rule
	Example

	5.5. INDEX
	Format
	Usage
	Index-set-name
	Index-field-name
	Example

	5.6. LINK
	Format
	Usage
	Link-name
	Owner-record
	Member-record
	OPTIONAL
	Example

	5.7. FIELD
	Format
	Usage
	Example

	Programming With MetaSuite File- Access (IDMS)
	6.1. Overview
	6.2. Programming Considerations
	Accessing the database
	Processing Sequence
	Navigating the Database
	Program commands
	Efficiency Considerations

	6.3. SourceFile
	SourceFile-name
	Prefix
	Schema Name
	Version Number
	Subschema Name
	PATH
	Identifying the Entry Record and Its Access Technique
	MetaMap correspondence
	Identifying Subordinate Records
	MetaMap correspondence
	Identifying Associated Records
	Example 1: Multiple Path
	Example 2: Bill-of-Materials Paths
	The Path Analysis Report
	Matching files
	Controlled SourceFile
	Controlled By SourceFile
	Example 1: Controlling Database Access from an External File
	Program Code
	Discussion

	Example 2: Controlling Database Access from within the Database Itself
	Problem Statement
	Program Code
	Discussion

	6.4. Procedural Commands
	Checking the Return Status

	6.5. Command Summary
	6.6. EXCLUDE
	Command Syntax
	Usage
	Bypassing Processing for a Record
	Bypassing Paths of Records
	Bypassing CONTROLLED BY Records

	6.7. EXIT
	Command Syntax
	Usage

	6.8. GET
	Command Syntax
	Usage
	Identifying the Record(s) to be Read
	Specifying the Access Key Value
	Combining SOURCEFILE and GET Command Syntax Options
	Example 1: Retrieving a CALC Record
	Example 2: Retrieving an Indexed Record
	Example 3: Retrieving a Path of Records

	6.9. HALT ALL
	Command Syntax
	Usage

	6.10. HALT SOURCEFILE
	Command Syntax
	Usage
	Identifying the SourceFile(s) to Be Halted

	6.11. ACCEPT FROM CURRENCY
	Command Syntax
	Usage

	6.12. IDMS ACCEPT FROM SET
	Command Syntax
	Usage

	6.13. RELEASE
	Command Syntax
	Usage

	6.14. START
	Command Syntax
	Usage
	Identifying the Record or Subschema
	Specifying the Starting Position

	MetaSuite CA-IDMS DML Commands
	7.1. Overview
	7.2. Checking the Return Status
	7.3. Command Summary
	7.4. ACCEPT FROM CURRENCY
	Command Syntax
	Usage
	Identifying the GlobalField for the Db-key
	Requesting the Db-key of the Current Record
	Specifying a Record Name
	Specifying a Set Name

	7.5. ACCEPT FROM SET
	Command Syntax
	Usage
	Identifying the GlobalField for the Db-key
	Identifying the Set
	Specifying the Record

	7.6. IF MEMBER
	Command Syntax
	Usage
	Testing a Record for Set Membership
	Testing a Set for Member Records

	7.7. OBTAIN DB-KEY IS
	Command Syntax
	Usage
	Specifying a Record Name
	Identifying the GlobalField for the Db-key

	7.8. OBTAIN CURRENT WITHIN SET
	Command Syntax
	Usage
	Requesting the Current Record for a Subschema
	Specifying a Record Name
	Specifying a Set Name

	7.9. OBTAIN WITHIN SET
	Command Syntax
	Usage
	Specifying the Relative Record to Obtain
	Specifying a Record Name
	Specifying the Set

	7.10. OBTAIN WITHIN AREA
	Command Syntax
	Usage
	Specifying the Relative Record to Obtain
	Specifying a Record Name
	Specifying the Area

	7.11. OBTAIN OWNER WITHIN SET
	Command Syntax
	Usage
	Specifying a Set Name

	7.12. OBTAIN RECORD-NAME
	Command Syntax
	Usage
	Specifying Which Record to Obtain
	Specifying a Record Name

	7.13. OBTAIN WITHIN SET USING SORT KEY
	Command Syntax
	Usage
	Specifying a Record Name
	Specifying a Set Name
	Specifying the Sort-Key Value

	7.14. RELEASE
	Command Syntax
	Usage

	Appendix A - MetaStore Manager Collect for CA-IDMS
	A.1. Overview
	MetaSuite and CA-IDMS Terms

	A.2. IDMS SCHEMA
	Source information
	IDMS File Information
	File Name
	Subschema Name
	Database Name
	Result
	Example

	A.3. IDMS RECORD
	Source information
	IDMS File Information
	Result
	Example

	Appendix B - Sample Programs
	B.1. MDL data Samples
	MDL definition of IDMS-SIMULATION-CARS
	MDL definition of IDMS-SIMULATION-GARAGES

	B.2. Sample 1 - "Via Index"
	B.3. Sample 2 - "OBTAIN"
	B.4. Sample 3 - "Controlled by work field"

