
IDMS File Access Guide

Release 8.1.3
November 2013

IKAN Solutions N.V.
Kardinaal Mercierplein 2
B-2800 Mechelen
BELGIUM

Copyright © 2013, IKAN Solutions N.V.

No part of this document may be reproduced or transmitted in any form or by any
means, electronically or mechanically, for any purpose, without the express written
permission of IKAN Solutions N.V.

MetaSuite, MetaStore Manager, MetaMap Manager and Generator Manager are
trademarks of IKAN Solutions N.V.
IDMS is a trademark of Computer Associates (CA Inc).

Table of Contents

Chapter 1 - About This Manual... 1
1.1. Prerequisites ...1

1.2. Related Publications ...1

Chapter 2 - MetaSuite File Access Overview.. 3

Chapter 3 - CA-IDMS Concepts and Terminology .. 4
3.1. Overview...4

3.2. CA-IDMS data structures..4

3.3. Records ...4

Location Modes ..5
Indexes..5
Data Structure Diagram..5
Sets ...6
Set Linkage ...7
Set Order ..7
Data Structures ...9
Hierarchical Structure ...9
Network Structure ..10

3.4. Accessing Information ..12

Integrated Data Dictionary (IDD)..12
Schema ...12
Subschema..12

Run-Unit ..12
Path...12
Currencies...13

Chapter 4 - Using MetaSuite with a CA-IDMS database................................... 14
4.1. MetaSuite and CA-IDMS Terminology ...14

File ..15
Record ..15
Field ..15
Index ...15
Link..15
Data Definition Facilities...15

4.2. Programming Overview..15

CA-IDMS SourceFile path...16
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

TABLE OF CONTENTS | ii
Extended MetaSuite Facilities ..16
What the Program Sees..16
Multiple Databases...16

Chapter 5 - Defining a CA-IDMS Database... 17
5.1. Overview...17

5.2. Defining Databases Manually ...17

Commands..18
MetaSuite Commands that Define CA-IDMS Data Structures...18

5.3. FILE ...18

Format ..18
File-name ..18
Schema-name ...18
Schema-version...18
Subschema-name ...19
Business-rule ...19
Example ..19

5.4. RECORD ...19

Format ..19
Usage..19
Record-name ..20
File-name ..20
Maximum-record-size ...20
Storage-keyfield ...20
Area-name ..20
Business-rule ...20
Example ..20

5.5. INDEX ...21

Format ..21
Usage..22
Index-set-name...22
Index-field-name...22
Example ..22

5.6. LINK ..22

Format ..22
Usage..23
Link-name ...23
Owner-record ...23
Member-record ..23
OPTIONAL..23
Example ..23

5.7. FIELD ..24

Format ..24
Usage..24
Example ..24
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

TABLE OF CONTENTS | iii
Chapter 6 - Programming With MetaSuite File-Access (IDMS) 26
6.1. Overview...26

6.2. Programming Considerations...26

Accessing the database..26
Processing Sequence..27
Navigating the Database..27
Program commands ...27
Efficiency Considerations ...27

6.3. SourceFile ...28

SourceFile-name ...28
Prefix...28
Schema Name...29
Version Number..29

Subschema Name...29
PATH...29
Identifying the Entry Record and Its Access Technique...30
MetaMap correspondence ...30
Identifying Subordinate Records ..30
MetaMap correspondence ...32
Identifying Associated Records ..32
Example 1: Multiple Path ...32
Example 2: Bill-of-Materials Paths ..33
The Path Analysis Report..35
Matching files ...35
Controlled SourceFile...36
Controlled By SourceFile..36
Example 1: Controlling Database Access from an External File ..37

Program Code ..37

Discussion...37

Example 2: Controlling Database Access from within the Database Itself ..38
Problem Statement ..38

Program Code ..38

Discussion...39

6.4. Procedural Commands ...39

Checking the Return Status ..39

6.5. Command Summary ...40

6.6. EXCLUDE..40

Command Syntax ...40
Usage..40
Bypassing Processing for a Record ..41
Bypassing Paths of Records..42
Bypassing CONTROLLED BY Records ...42

6.7. EXIT...43

Command Syntax ...43
Usage..43

6.8. GET ...44
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

TABLE OF CONTENTS | iv
Command Syntax ...44
Usage..44
Identifying the Record(s) to be Read..44
Specifying the Access Key Value ..44
Combining SOURCEFILE and GET Command Syntax Options ...44

Example 1: Retrieving a CALC Record...45

Example 2: Retrieving an Indexed Record ...45

Example 3: Retrieving a Path of Records ...45

6.9. HALT ALL..46

Command Syntax ...46
Usage..46

6.10. HALT SOURCEFILE...46

Command Syntax ...46
Usage..46
Identifying the SourceFile(s) to Be Halted..46

6.11. ACCEPT FROM CURRENCY...47

Command Syntax ...47
Usage..47

6.12. IDMS ACCEPT FROM SET..47

Command Syntax ...47
Usage..47

6.13. RELEASE ...47

Command Syntax ...47
Usage..47

6.14. START ...48

Command Syntax ...48
Usage..48
Identifying the Record or Subschema ..48
Specifying the Starting Position ...48

Chapter 7 - MetaSuite CA-IDMS DML Commands.. 49
7.1. Overview...49

7.2. Checking the Return Status ..49

7.3. Command Summary ...49

7.4. ACCEPT FROM CURRENCY...50

Command Syntax ...50
Usage..50
Identifying the GlobalField for the Db-key ..50
Requesting the Db-key of the Current Record ..51
Specifying a Record Name ...51
Specifying a Set Name ...51

7.5. ACCEPT FROM SET ...51

Command Syntax ...51
Usage..52
Identifying the GlobalField for the Db-key ..52
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

TABLE OF CONTENTS | v
Identifying the Set ..52
Specifying the Record ..52

7.6. IF MEMBER...52

Command Syntax ...52
Usage..52
Testing a Record for Set Membership ...53
Testing a Set for Member Records...53

7.7. OBTAIN DB-KEY IS...54

Command Syntax ...54
Usage..54
Specifying a Record Name ...54
Identifying the GlobalField for the Db-key ..54

7.8. OBTAIN CURRENT WITHIN SET..54

Command Syntax ...54
Usage..54
Requesting the Current Record for a Subschema..55
Specifying a Record Name ...55
Specifying a Set Name ...55

7.9. OBTAIN WITHIN SET ...55

Command Syntax ...55
Usage..55
Specifying the Relative Record to Obtain ..55
Specifying a Record Name ...56
Specifying the Set...56

7.10. OBTAIN WITHIN AREA ..56

Command Syntax ...56
Usage..56
Specifying the Relative Record to Obtain ..56
Specifying a Record Name ...57
Specifying the Area ..57

7.11. OBTAIN OWNER WITHIN SET...57

Command Syntax ...57
Usage..57
Specifying a Set Name ...57

7.12. OBTAIN RECORD-NAME...58

Command Syntax ...58
Usage..58
Specifying Which Record to Obtain ...58
Specifying a Record Name ...58

7.13. OBTAIN WITHIN SET USING SORT KEY..58

Command Syntax ...58
Usage..58
Specifying a Record Name ...59
Specifying a Set Name ...59
Specifying the Sort-Key Value ..59

7.14. RELEASE ...59
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

TABLE OF CONTENTS | vi
Command Syntax ...59
Usage..59

Appendix A - Appendix A - MetaStore Manager Collect for CA-IDMS............. 60
A.1. Overview...60

MetaSuite and CA-IDMS Terms ...60

A.2. IDMS SCHEMA ...60

Source information ...60
IDMS File Information...61
File Name..61
Subschema Name...61
Database Name ..61
Result ..62

Example ..62

A.3. IDMS RECORD ...65

Source information ...65
IDMS File Information...66
Result ..66
Example ..66

Appendix B - Appendix B - Sample Programs .. 68
B.1. MDL data Samples..68

MDL definition of IDMS-SIMULATION-CARS ..68
MDL definition of IDMS-SIMULATION-GARAGES...68

B.2. Sample 1 - "Via Index" ...69

B.3. Sample 2 - "OBTAIN" ..71

B.4. Sample 3 - "Controlled by work field" ...72
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CHAPTER 1

About This Manual

MetaSuite file access for IDMS is intended for users with some experience with MetaSuite. It provides the
information you need to use the MetaSuite IDMS Database File Access, including discussions on CA-IDMS
concepts, defining a CA-IDMS 'database' for use with MetaSuite and using MetaSuite commands to access
CA-IDMS databases.
Because most MetaSuite commands are independent of the environment in which MetaSuite operates, only
those commands that pertain to CA-IDMS database definition and access are described in this supplement.
MetaSuite User and Reference Guided are the primary sources of information about MetaSuite.

1.1. Prerequisites
Readers are expected to be familiar with CA-IDMS.

1.2. Related Publications
The MetaSuite User and Reference Guides describe the different MetaSuite components and provide
examples for using MetaSuite. Those guides should be available for reference during the installation and test
procedures described here.
The following table gives an overview of the complete MetaSuite documentation set.

Release Information Release Notes 8.1.3

Installation Guides • BS2000/OSD Runtime Component
• DOS/VSE Runtime Component
• Fujitsu Windows Runtime Component
• MicroFocus Windows Runtime Component
• MicroFocus UNIX Runtime Component
• OS/390 and Z/OS Runtime Component
• OS/400 Runtime Component
• VisualAge Windows Runtime Component
• VisualAge UNIX Runtime Component
• VMS Runtime Component

User Guides • INI Manager User Guide
• Installation and Setup Guide
• Introduction Guide
• MetaStore Manager User Guide
• MetaMap Manager User Guide
• Generator Manager User Guide
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

ABOUT THIS MANUAL | 2
If you are unfamiliar with MetaSuite, the following technical description provides you with a brief overview.

Technical Guides • ADABAS File Access Guide
• IDMS File Access Guide
• IMS DLI File Access Guide
• RDBMS File Access Guide
• XML File Access Guide
• Runtime Modules
• User-defined Functions User Guide

The MetaSuite System MetaSuite is designed for data retrieval, extraction, conversion and
reporting. It includes a workstation-based graphical user interface and
a mainframe runtime component.

MetaSuite Database Interfaces MetaSuite can access data from a number of database management
systems, using the same commands, program structure and retrieval
techniques used for non-database files. Each database interface is
available as an optional enhancement to the base product.

MetaMap Manager MetaMap Manager is the MetaSuite tool used to define models. Such
models are intuitively built by describing overall program
specifications, input file definitions (data and process) and target file
definitions (data and process).

MetaStore Manager MetaStore Manager is a tool that provides metadata maintenance and
documentation services.

Generator Manager The Generator Manager is the system administration tool.All kinds of
basic functionalities and customization possibilities are supported by
this tool.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CHAPTER 2

MetaSuite File Access Overview

Because most MetaSuite commands are independent of the environment in which MetaSuite operates, only
those commands that pertain to a CA-IDMS database definition and access are described in this supplement.
Additional chapters in this manual include:

Topic Description

CA-IDMS Concepts and Terminology Presents a brief overview of the concepts and terminology
you need to have to work with a CA-IDMS database.

About the MetaSuite IDMS Interface Introduces the facilities of the MetaSuite IDMS Database
Interface

Defining a CA-IDMS Database to MetaSuite Tells you how to provide MetaSuite with the definitions of
IDD. These are the definitions necessary to process data in a
CA-IDMS database.

Programming with the IDMS File Access Tells you how to use the MetaSuite commands that access
information stored in a CA-IDMS database.

Reference to CA-IDMS DML Commands Tells you how to embed CA-IDMS DML commands in a
MetaSuite IDMS program.

Collect from IDD using MetaStore Manager Tells how you can use the MetaStore Manager to produce
MetaSuite file definitions for IDMS definitions out of IDD.

IDMS Samples Some worked out MetaSuite MDL and MSL samples
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CHAPTER 3

CA-IDMS Concepts and
Terminology

3.1. Overview
IDMS is the database management system (DBMS) distributed by Computer Associates. In a CA-IDMS
environment, data is stored in one centralised location, and is defined outside the scope of the application
programs that use the data.
This chapter presents an overview of the CA-IDMS concepts and terms you should know before using
MetaSuite to access a CA-IDMS database. It is broken down as follows:

• CA-IDMS data structures discusses the CA-IDMS database structures and objects that are pertinent to
MetaSuite processing

• Accessing information discusses general database concepts and access considerations for application
programs.

For more information, see CA-IDMS documentation from Computer Associates.

3.2. CA-IDMS data structures
This section describes the main CA-IDMS objects and related topics. The topics covered are:

• Records

• Location Modes

• Indexes

• Data structure diagrams

• Sets

• Set Linkage

• Set order

• Hierarchical data structure

• Network data structure
Each topic is described separately below.

3.3. Records
The basic unit of information that you retrieve from a database is a record occurrence. A record occurrence is a
collection of related data items, or fields. A record type defines the format of similar record occurrences. There
can be many record types in a database, each with its own definition.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CA-IDMS CONCEPTS AND TERMINOLOGY | 5
Record types are connected logically by sets. A single record type can belong to many sets, or none. Each set
defines a different logical relationship between record types. (More on sets later)
In MetaSuite file access for IDMS:

• A CA-IDMS record type is defined and referred to as a RECORD.

Location Modes
Each record is stored in a specific area of the database, using one of the following location modes to determine
its physical location:

• DIRECT -- Records are stored according to a suggested database key, provided by the application program
that stores the record.

• CALC -- Records are stored according to the hashed value or one or more key data items. This key value
is called a CALC-key.

• VIA -- Member records for each set occurrence are stored physically near each other.
CA-IDMS assigns a unique Database key to each record when it is stored, and provides that key to the
program for later use.

Indexes
An index provides ordered access to record occurrences, based on the value of a data item(s) in the record. A
record type can have one or more indexes, or none.
For example, a customer record might be stored with the CALC location mode, where the CALC-key is the
customer number. An index can be defined for the record, based on the customer name, to provide another
means of access to the customer records.
In MetaSuite file access for IDMS:

• A CA-IDMS index is defined and referred to as an INDEX.

Data Structure Diagram
A data structure diagram illustrates and documents the relationships among the records of a CA-IDMS
database. These diagrams use the following conventions:

• A rectangle represents a database record type. Record-type rectangles are often subdivided to show specific
information about the record.

• A circle represents a record occurrence.

• Lines connecting rectangles represent set types.

• Lines connecting circles represent actual relationships between record occurrences, within a set occurrence.

• A triangle represents an index, and is connected by a line to the rectangle that represents the indexed record
type.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CA-IDMS CONCEPTS AND TERMINOLOGY | 6
The following diagram illustrates a portion of a customer database. Customer, invoice, item, and invoice
remark information is each stored separately, on records defined for that specific purpose.

The sets CUSTOMER-INVOICE, INVOICE-ITEM, and INVOICE-IREMARK relate, respectively, the
CUSTOMER and INVOICE records, the INVOICE and ITEM records, and the INVOICE and
IREMARK records. There is no direct relationship between CUSTOMER and ITEM records, or
CUSTOMER and IREMARK records. Presumably, any application that uses these record combinations
would also access the INVOICE record. Note that the INVOICE record belongs to three sets, while the other
records belong to only one set each.
There is an index for the CUSTOMER record that indexes the records based on the customer names. (More
on indexes later)
An occurrence of a CUSTOMER record, with its related INVOICE and ITEM records, might look like this:

Sets
Like records, sets have set types and set occurrences. A set type is the definition of a logical relationship
between two or more record types, where one record type is the owner and the other type(s) is the member(s).
The member record type(s) is logically subordinate to the owner record type. A set occurrence is a group of
actual records that are associated by a logical set relationship.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CA-IDMS CONCEPTS AND TERMINOLOGY | 7
For example, the INVOICE record is the owner of the INVOICE-ITEM set, in which ITEM records are
members. Each INVOICE occurrence owns one or more ITEMs. Each ITEM represents a line item on the
invoice that owns it.
For each set type, one set occurrence exists for each owner record occurrence. A set occurrence can have
multiple member record occurrences. Each member record occurrence can be connected to a maximum of one
set occurrence within a given set type. A set occurrence that has no member record occurrences is called an
empty set.
Note that a member record occurrence can exist disconnected to any set occurrence.

Set Linkage
The owner and members of a set occurrence are linked with one or more of the following types of pointers to
link the record occurrences together within the set:

• NEXT (required for all sets). The owner points to the first member, the first member to the second
member, and so on, with the last member pointing to the owner. This establishes a circular structure.

• PRIOR (optional). The owner points to the last member, the last member to the next-to-the-last member,
and so on, with the first member pointing to the owner. This reverses the order established by NEXT
pointers.

• OWNER (optional). Each member points to the owner.
The following diagram illustrates an occurrence of the CUSTOMER-INVOICE set, which is linked by all
three types of pointers. The solid lines show the next pointers, the broken lines show the prior pointers, and
the dotted lines show the owner pointers:

In MetaSuite file access for IDMS:

• A CA-IDMS SPF set (Sequential Processing Facility) is defined and referred to as an INDEX.

• A CA-IDMS non-SPF set is defined and referred to as a LINK

Set Order
The order defined for a set determines where a new member occurrence is linked into an existing set
occurrence. Each set uses one of these ordering methods:

• FIRST - the new member is positioned immediately after the owner record, as the first member of the set.

• LAST - the new member is positioned immediately before the owner record, as the last member of the set.

• NEXT - the new member is positioned immediately after the current member of the set. (See "Accessing
Information", later in this chapter, for more on currency.)
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CA-IDMS CONCEPTS AND TERMINOLOGY | 8
• PRIOR - the new member is positioned immediately before the current member of the set. (See "Accessing
Information", later in this chapter, for more on currency.)

• SORTED - the new member is positioned according to the value of one of its fields (called a sort-key field),
relative to the values of the same field in the other member records. Member records can be in ascending
or descending order, with respect to the designated sort-key field. Records with duplicate sort-key values
can be positioned first or last, or not allowed.

In the illustration below, invoice SC293 is added to the CUSTOMER-INVOICE set occurrence for customer
26743. The logical position of the new invoice within the set is shown for the next, prior, last and first set-
order options. The program is positioned on the second member occurrence before the new invoice is inserted
into the set (marked with an arrow).
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CA-IDMS CONCEPTS AND TERMINOLOGY | 9
To illustrate a sorted set, assume that the INVOICE-ITEM set is sorted in ascending order by the item name
field. The following diagram shows how the duplicate item, BATTERY, is inserted for the duplicates options
LAST, FIRST, and NOT ALLOWED:

Data Structures
The relationship between records in a single set defines what can be viewed as a sequential structure: each
record in the set is related to the records before and after it, creating a circular list.
A typical CA-IDMS database has many record types. Using sets to define the relationships among these
record types, you can define either a hierarchical or a network data structure.

Hierarchical Structure
A hierarchy is a vertical structure where the member(s) of one set are owners of a second set, the members of
that second set are owners of a third set, and so forth. Each record type might own multiple sets, thus creating
the branching effect illustrated below:
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CA-IDMS CONCEPTS AND TERMINOLOGY | 10
In the above diagram, the set that has the owner record type B1, and member record types C1 and C2,
illustrates a multiple-member set. In this type of set, two or more record types are members of the set. The
member record types are sufficiently related to be accessed together, but either are structured differently or
must be separately accessed often enough to warrant separate record descriptions.
For example, you might create a multiple-member set in an employee database that relates an employee record
to the company benefits provided to that employee. Each type of benefit (medical insurance, life insurance,
pension, and so forth) would have its own record type. An occurrence of the set for an individual employee
would include only those record types that are appropriate for that employee.

Network Structure
A network structure incorporates all the properties of a hierarchy and introduces one additional concept:
records can participate as members in two or more sets. The following diagram illustrates a network structure:

A network structure provides the answer to the problem of shared membership: a single member record type
that is owned by two (or more) other record types. This member record type, called a junction record, is
associated logically with the owners in both sets, creating a many-to-many relationship (versus the one-to-
many relationship in a hierarchy). Each junction record occurrence relates an owner record occurrence in one
set with an owner record occurrence in the other set, and can be used to store data specific to that combination
of owner records.
For example, assume that in an employee database there are DEPARTMENT records and EMPLOYEE
records. Each department can have more than one employee, and each employee can work for more than one
department. Assume that skills, required by the department and performed by an employee, provide the link
between departments and employees.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CA-IDMS CONCEPTS AND TERMINOLOGY | 11
Department 100 requires EDIT, PROOF, and PAST-UP skills. Department 200 requires only EDIT skills.
Jane Smith works for Department 200 (as an editor). Bob Jensen works for Department 100 (as a paste-up
artist and proofreader). Julie Arnold and Leonard Manning work for both departments as editors. These
relationships are illustrated on the next page:

There is a special case of a network structure, in which occurrences of the same record type are associated in a
many-to-many relationship. This structure is called a bill-of-materials structure, because it represents the
requirements of a manufacturing environment to associate manufactured goods with their component parts.
Each component part might itself have other component parts, and so forth. (In fact, the manufactured good
might be a component part of a still-larger item.)
This structure is effected by creating a member record that is related to the single owner through two set
relationships: one pointing to subordinate components (components-used) and one pointing to larger items, of
which the owner item is a component (components-of).
The created (junction) record might include information such as the quantity used. The following diagram
illustrates a bill-of-materials structure:
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CA-IDMS CONCEPTS AND TERMINOLOGY | 12
3.4. Accessing Information
This section discusses some general concepts relating to CA-IDMS database access.

Integrated Data Dictionary (IDD)
A key component of a CA-IDMS database is the Integrated Data Dictionary (called the IDD). The IDD is
itself a CA-IDMS database and contains the definitions of all the data and data relationships contained in the
database. Definitions of non-database files can also be stored in the IDD.
All CA-IDMS users have at least one IDD. In a distributed or shared database environment, there may be
multiple IDDs. In this environment, there is always a primary, or default, IDD that CA-IDMS uses if you do
not name another IDD when you access the database.
During program processing, CA-IDMS uses the IDD for data definition information required to execute
program requests.

Schema
The highest form of database definition information stored in the IDD is the schema definition. A schema
completely describes a logical collection of records with their set relationships. There can be multiple schemas
defined in the IDD, and multiple versions of the same schema definition.
A schema also includes information about the physical characteristics of the entities it defines. For records, this
information includes the storage area within the database in which occurrences of the record are stored, and
the location mode used to determine where to store each record within its area. For sets, this information
includes the type of set linkage to be used and the order in which member records are to be stored in the set.

Subschema
An application view of a database is through a subschema. A subschema defines a subset of a schema, and may
include all or some of the entities defined by the schema. A program can access only the records and fields that
are defined to the subschema it uses to access the database.

Run-Unit
Each program that accesses a CA-IDMS database must name the subschema it wants to use when it first signs
onto CA-IDMS. The sign-on process is called binding to CA-IDMS. Binding establishes the program as an
individual run-unit within the CA-IDMS environment.
Once a run-unit is established, the program can begin to navigate the database to retrieve or store information.

Path
There are many ways to navigate a database structure. If a program needs to access more than one type of
database record, a path through the records must be determined.
A path defines the way in which the program traverses the database: the choice of records to be processed and
the relationships that join them. Each path begins with a specific record, or entry record, and proceeds through
the database structure, from one record to another, using the set relationships. There are two types of paths:
single path and multiple paths.
A single path has no branches. In the customer database, a single path might include the CUSTOMER,
INVOICE, and ITEM records.
A multiple path has one or more branches. In the customer database, a multiple path might include the
CUSTOMER, INVOICE, ITEM, and IREMARK records. the path branches at the INVOICE record,
which owns both the ITEM and IREMARK records.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CA-IDMS CONCEPTS AND TERMINOLOGY | 13
The choice of the entry record for a database path is often determined by the location mode of the records to
be accessed. For example, a record that uses the CALC location mode often makes a good entry record,
because it can be accessed directly, using its CALC-key value.

Currencies
To aid in successful navigation of the database, CA-IDMS maintains the Db-keys of the most recently
accessed records, which are categorized as follows:

Currency Type Description

Run-unit The most recent record occurrence, of any type, accessed by the program is the current
of run-unit.

Record type The most recent record occurrence for each record type is the current of record type
for that type.

Set The most recent (owner or member) record occurrence in each set is the current of set
for that set.

Area The most recent record occurrence in each area is the current of area for that area.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CHAPTER 4

Using MetaSuite with a CA-IDMS
database

This chapter introduces the MetaSuite facilities that allow you to access a CA-IDMS database from a
MetaSuite application.
You should be familiar with the CA-IDMS concepts presented in the section CA-IDMS Concepts and
Terminology (page 4) before reading this chapter.
To access a CA-IDMS database from a MetaSuite application, MetaSuite requires two things:

• Access to the CA-IDMS data definitions necessary to process the data in the CA-IDMS database. These
definitions can come directly from IDD via the MetaStore Manager or prepared manually by creating an
MDL (MetaSuite Definition Language) import – export text file.

• Specific MetaMap Manager commands to define the actual data retrieval requests for the CA-IDMS
database. The MetaSuite Generator converts these MetaMap Manager commands into their CA-IDMS
equivalents and produces a standard COBOL program with CA-IDMS statements.

The remainder of this chapter presents a brief overview of the MetaSuite facilities for providing access to the
CA-IDMS data definitions and defining the data retrieval requests. This chapter also includes a description of
the program generation process, as well as a summary of the differences between MetaSuite and CA-IDMS
terminology.

4.1. MetaSuite and CA-IDMS Terminology
All MetaSuite file access components use the same terminology when referring to data structures. The
MetaSuite terminology, though, may differ from that of an individual DBMS. The relationships between the
basic MetaSuite and CA-IDMS terms are as follows:

The MetaSuite terms are described separately below, along with their CA-IDMS correspondences.

MetaSuite CA-IDMS

File Schema

Record Record Type

Field Field

Index CA-IDMS Index

Link CA-IDMS set
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

USING METASUITE WITH A CA-IDMS DATABASE | 15
File
In MetaSuite file access for IDMS, a CA-IDMS Schema is defining a MetaSuite file. For each file, the default
subschema within the schema to be used is specified on the file definitions through the DBNAME notion.
The file allows all data from the different records within the file to be treated as a logical record.

Record
In MetaSuite file access for IDMS, a CA-IDMS record type is known as a record.
One occurrence of a record type is referred to as a record occurrence. Note, though, that the term "record" can
be used to mean either a record type or a record occurrence (that is, a row). The meaning in a given case
depends on the context.

Field
In MetaSuite File Access for IDMS, a field on a record type is known as a field.

Index
In MetaSuite File Access for IDMS, a CA-IDMS index is known as an index. It will give you the possibility
to determine yourself the access path towards the records.

Link
In MetaSuite File Access for IDMS, a CA-IDMS set is known as a link. You will use the links to determine
how the relations have to be set between multiple records in a file.

Data Definition Facilities
MetaSuite provides two separate data definition facilities for use in the CA-IDMS environment:

• The MetaStore Manager collect option provides MetaSuite with access to the data definitions stored in
IDD (exported through the use of a CA-IDMS punch) to define CA-IDMS objects to the MetaStore
Manager (as records and fields).

• CA-IDMS dictionary files created manually in the MetaStore Manager.
Refer to the MetaStore Manager Use Guide for more information.

4.2. Programming Overview
MetaSuite programs have the same structure and report processing capabilities regardless of the file
organization used. In other words, their structure and report processing capabilities are the same whether they
are used to access DBMS or non-DBMS files.
Most of the MetaMap Manager commands with which you are already familiar can be used to process a CA-
IDMS database.
When used with a CA-IDMS database, the MetaSuite Generator produces the native CA-IDMS calls for
each MetaMap Manager SourceFile object that names a CA-IDMS file in a MetaSuite application. The
generated native CA-IDMS calls will be dependent of the used path within the MetaMap Manager
SourceFile. Multiple SourceFile objects for CA-IDMS files can be used in a single application program. The
same matching, controlling, and buffering capabilities are used with a CA-IDMS "file" as with a non-database
file.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

USING METASUITE WITH A CA-IDMS DATABASE | 16
The section Defining a CA-IDMS Database (page 17) presents detailed instructions on using the MetaMap
Manager commands that access a CA-IDMS database.

CA-IDMS SourceFile path
In processing a program constructed with MetaSuite File Access for IDMS, the MetaSuite Generator
converts the different components within the SourceFile path to the proper CA-IDMS native calls in the
resulting COBOL source program.
The SourceFile object options for MetaSuite File Access for IDMS are described in the section Programming
With MetaSuite File-Access (IDMS) (page 26).

Extended MetaSuite Facilities
The SourceFile object offers the following expanded file-based retrieval and processing, beyond the joining
capabilities described above:

• File matching. The MATCH option of the SourceFile object allows CA-IDMS files (that is, data returned
by relational) to be matched with CA-IDMS or non-CA-IDMS files.

• Controlled retrieval. The CONTROLLED option of the SourceFile object in conjunction with the GET
command allows an individual row to be retrieved randomly.

• Controlled by retrieval. The CONTROLLED BY option of the SourceFile object allows sets of rows to
be retrieved randomly.

What the Program Sees
What a MetaSuite application sees is a logical record (path) consisting of one row returned by the CA-IDMS
call.

Multiple Databases
MetaSuite can access up to 100 files in one program. These files can include CA-IDMS, relational and other
non-DBMS files.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CHAPTER 5

Defining a CA-IDMS Database

5.1. Overview
This chapter describes how to provide MetaSuite with access to the definitions that it needs to process data in
a CA-IDMS database.
Note that the descriptions in this chapter use both the MetaSuite and CA-IDMS terminology for data
entities, as appropriate. The correspondences between the MetaSuite and CA-IDMS terminology are
discussed in detail in the section CA-IDMS Concepts and Terminology (page 4). These correspondences are
summarized in the following table.

Before you can access data in a CA-IDMS database, you must provide MetaSuite with access to the
definitions necessary to process the data. CA-IDMS versions of the ADD FILE, ADD RECORD, ADD
FIELD, ADD INDEX and ADD LINK commands are provided for defining CA-IDMS files to the
MetaSuite MetaStore (see "Defining Databases Manually," later in this chapter).
However, an easier approach is to use the Collect File functionality of the MetaStore Manager to copy
definitions out of a CA-IDMS schema IDD export, and then load the copied definitions into the MetaStore.
We recommend the use of the collect functionality in the MetaStore Manager to define the CA-IDMS
database to the MetaStore. For more information about this functionality, refer to Appendix A - MetaStore
Manager Collect for CA-IDMS (page 60).

5.2. Defining Databases Manually
This section describes how to define a CA-IDMS database to MetaStore manually.
Before defining a CA-IDMS database to the MetaStore, you should obtain the necessary schema, record,
field, link and set information from the CA-IDMS catalog.

Note: Use of the manual coding method is not recommended. It requires careful translation of the CA-
IDMS definitions into MetaSuite definitions. As a result, it is more subject to error than using the
Collect File option of MetaStore Manager.

MetaSuite CA-IDMS

File A CA-IDMS schema

Record A CA-IDMS record type

Field A CA-IDMS field

Index A CA-IDMS index

Link A CA-IDMS set
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

DEFINING A CA-IDMS DATABASE | 18
Commands
The following table lists the commands used to manually code CA-IDMS data definitions.

MetaSuite Commands that Define CA-IDMS Data Structures

Each command is described separately below.

5.3. FILE
The ADD FILE command defines a CA-IDMS file to the MetaStore. The general syntax for the ADD FILE
command is described in the MetaMap Manager User Guide. The options that refer to CA-IDMS tables are
described below.
The ADD FILE command will describe all records within a CA-IDMS schema.

Format

ADD FILE File-name TYPE IDMS
 SCHEMA Schema-name VERSION Schema-version
 DBNAME 'Subschema-name'
 [RULE Business-rule]

File-name
Required. File-name is an arbitrary name of up to 32 characters. It can include alphabetic characters, numbers,
the embedded characters #, @, $, embedded hyphens and embedded underscores. It must begin with an
alphabetic character.

Schema-name
Required. Schema-name is the name of the CA-IDMS schema.

Schema-version
Required. Schema-version is the version of the CA-IDMS schema.

Command Used to define

ADD FILE A CA-IDMS schema

ADD RECORD A CA-IDMS record type

ADD FIELD A CA-IDMS field

ADD INDEX A CA-IDMS index

ADD LINK A CA-IDMS set
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

DEFINING A CA-IDMS DATABASE | 19
Subschema-name
Required. Subschema-name will specify the default subschema and optionally the default CA-IDMS database
that is to be used within MetaMap Manager access. The name must be enclosed in single quotes. The format
is 'Subschema-name[.Database-name]'.

Business-rule
Optional. The RULE option is used to add a business rule documenting your file.

Example
A CA-IDMS customer database is to be defined to the MetaStore. After examining the IDMSRPTS listings
for this database, it is determined that the subschema, or "application view" for the database, that we want to
use is named "CUSTSS01". An ADD FILE command would be coded as follows:

ADD FILE IDMSCUST TYPE IDMS
SCHEMA CUSTSCHM VERSION 1 DBNAME 'CUSTSS01'

5.4. RECORD
The ADD RECORD command defines a CA-IDMS record to the MetaStore. The general syntax for the
ADD RECORD command is described in the MetaMap Manager User Guide. The options that refer to CA-
IDMS records are described below.

Format

ADD RECORD Record-name [OF File-name]
 SIZE maximum-record-size
 [STORAGE-KEY storage-keyfield]
 STORAGE-AREA area-name
 [RULE Business-rule]

Usage
The ADD RECORD command defines a CA-IDMS database record to the MetaStore.
You can find the information you need to code on the ADD RECORD command in both the IDMSRPTS
Subschema Data Dictionary Listing for the subschema, and the Subschema Record Description Listing for
the record.
The Subschema Data Dictionary Listing provides information about a record in the following format:

RECORD: name ID: id VER: n TYPE: x LENGTH: size

The Subschema Record Description Listing provides information about a record in the following format:

RECORD NAME name
RECORD ID id
RECORD VERSION version
RECORD LENGTH format
LOCATION MODE mode
WITHIN area-name
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

DEFINING A CA-IDMS DATABASE | 20
Record-name
Required. Record-name is the name of the record, as shown in the RECORD statement of the IDMSRPTS
Subschema Data Dictionary Listing.

File-name
Optional. File-name is the name of the file to which the record belongs. If this option is omitted, the record is
defined within the current file; that is, within the file named on the most recent ADD FILE statement in the
command stream.

Maximum-record-size
Required. Maximum-record-size is the record size. The record size specified must be at least as large as the
record LENGTH shown in the IDMSRPTS Subschema Data Dictionary Listing.

Storage-keyfield
Required for any record whose location mode is CALC. The LOCATION MODE line on the Subschema
Record Description Listing appears as follows for a CALC record:

LOCATION MODE CALC USING calc-key

Storage-keyfield is the CALC-key name shown in the listing. If the location mode is VIA or DIRECT, the
STORAGE-KEY option is not allowed.

Area-name
Required. Area-name is the WITHIN name on the IDMSRPTS Subschema Record Description Listing, for
the record being defined.

Business-rule
Optional. The RULE option is used to add a business rule documenting your record.

Example
Assume that you want to add four record definitions to the MetaStore for the subschema CUSTSS01. The
first step would be to examine the IDMSRPTS Subschema Data Dictionary and IDMSRPTS Subschema
Record Description Listings for our sample database.
The record information on the Subschema Data Dictionary Listing might appear as follows:

RECORD: CUSTOMER ID: 0611 VER: 002
 TYPE: I LENGTH: 104
.
RECORD: INVOICE ID: 0620 VER: 002
 TYPE: I LENGTH: 40
.
RECORD: ITEM ID: 0621 VER: 002
 TYPE: I LENGTH: 226
.
RECORD: IREMARK ID: 0622 VER: 002
 TYPE: I LENGTH: 72
.

The record information on the Subschema Record Description Listing might appear as follows:
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

DEFINING A CA-IDMS DATABASE | 21
RECORD NAME CUSTOMER
RECORD ID 0611
RECORD VERSION 002
RECORD LENGTH FIXED
LOCATION MODE CALC USING CUST-NUMBER
WITHIN CUST-AREA
.
RECORD NAME INVOICE
RECORD ID 0620
RECORD VERSION 002
RECORD LENGTH FIXED
LOCATION MODE CALC USING INVOICE-NUMBER
WITHIN CUST-AREA
.
RECORD NAME ITEM
RECORD ID 0621
RECORD VERSION 002
RECORD LENGTH VARIABLE
LOCATION MODE VIA SET INVOICE-ITEM
WITHIN CUST-AREA
.
RECORD NAME IREMARK
RECORD ID 0622
RECORD VERSION 002
RECORD LENGTH FIXED
LOCATION MODE VIA-SET INVOICE-ITEM
WITHIN CUST-AREA
.

Using the information from these listings, the MetaSuite ADD RECORD commands would be coded as
follows:

ADD RECORD CUSTOMER OF IDMSCUST SIZE 104 STORAGE-KEY CUST-NUMBER STORAGE-AREA CUST-
AREA
ADD RECORD INVOICE OF IDMSCUST SIZE 40 STORAGE-KEY INVOICE-NUMBER STORAGE-AREA
CUST-AREA
ADD RECORD ITEM OF IDMSCUST SIZE 226 STORAGE-AREA CUST-AREA
ADD RECORD IREMARK OF IDMSCUST SIZE 72 STORAGE-AREA CUST-AREA

The subschema reference CUSTSS01 will be done in the ADD FILE statement for IDMSCUST. The record
sizes are taken from the LENGTH fields on the Subschema Data Dictionary Listing. The storage areas and
storage keyfields are taken from the WITHIN and LOCATION MODE statements on the Subschema
Record Description Listing.

5.5. INDEX
The ADD INDEX command defines a CA-IDMS index set to the MetaStore. The syntax for the ADD
INDEX command is described below.

Format

ADD INDEX index-set-name BASED ON index-field-name
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

DEFINING A CA-IDMS DATABASE | 22
Usage
A set is described on a CA-IDMSRPTS Subschema Set Description Listing, as follows:

SET index-set-name
PRIVACY LOCK IS
OWNER IXOWNER
MEMBER member-record ASC index-field-name

An OWNER record name of IXOWNER indicates that the set is to be defined as an index. If the owner
record name is anything else, use the ADD LINK command to define the set.

Index-set-name
Required. Index-set-name is the name of a CA-IDMS set (identified by SET in the Subschema Set
Description Listing).

Index-field-name
Required. Index-field-name is the name of the keyfield for the set, as shown following the MEMBER record
name in the Subschema Set Description Listing.

Example
Assume that the IDMSRPTS Subschema Set Description Listing for the sample database shows the
following information:

SET IX-CUST-NAME
PRIVACY LOCK IS
OWNER IXOWNER
MEMBER CUSTOMER ASC CUST-NAME

To define the set to the MetaStorSourceFile Path you would code:

ADD INDEX IX-CUST-NAME BASED ON CUST-NAME

Note that you must define the CUST-NAME field to the MetaStore before you can reference the IX-CUST-
NAME index set in a MetaSuite application program.

5.6. LINK
The ADD LINK defines CA-IDMS sets to the MetaStore as link entities. The syntax for the ADD LINK
command is described below.

Format

ADD LINK link-name
 FROM owner-record TO (member-record,...)
 [OPTIONAL]
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

DEFINING A CA-IDMS DATABASE | 23
Usage
A set is described in the IDMSRPTS Subschema Set Description Listing as follows:

SET set-name
PRIVACY LOCK IS
OWNER owner-record
MEMBER member-record

Link-name
Required. Link-name is the set name (SET), as shown in the Subschema Set Description Listing for the
subschema.

Owner-record
Required. Owner-record is the name of the OWNER record type, as shown in the Subschema Set Description
Listing. If the owner record in the Subschema Set Description Listing is IXOWNER, the set must be defined
to the MetaStore, using the ADD INDEX command.

Member-record
Required. Each member-record is the name of a MEMBER record type in the set being defined, as shown in
the Subschema Set Description Listing. If the set has only one member record type, the parentheses may be
omitted.

OPTIONAL
Optional. The OPTIONAL specification indicates that the participation of a given record type in the set is
"optional"; that is, CA-IDMS allows the link between two record types to be either present or absent under
user-defined conditions. If the MEMBER line of the IDMSRPTS Subschema Set Description Listing for
the set contains the word OPTIONAL, you must include the OPTIONAL keyword here.

Example
To continue the definition of our sample CUSTSS01 database, assume that the IDMSRPTS Subschema Set
Description Listing contains the following information:

SET CUST-INVOICE
PRIVACY LOCK IS
OWNER CUSTOMER
MEMBER INVOICE
.
SET INVOICE-ITEM
PRIVACY LOCK IS
OWNER INVOICE
MEMBER ITEM OPTIONAL
.
SET INVOICE-IREMARK
PRIVACY LOCK IS
OWNER INVOICE
MEMBER IREMARK
.
SET IX-CUST-NAME
PRIVACY LOCK IS
OWNER IXOWNER
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

DEFINING A CA-IDMS DATABASE | 24
MEMBER CUSTOMER ASC CUST-NAME

Based on this information, the following ADD LINK commands would be coded for the CUSTSS01
database:

ADD LINK CUST-INVOICE FROM CUSTOMER TO INVOICE
ADD LINK INVOICE-ITEM FROM INVOICE TO ITEM OPTIONAL
ADD LINK INVOICE-IREMARK FROM INVOICE TO IREMARK

5.7. FIELD
The ADD FIELD command defines a record field as a field to the MetaStore. The syntax for the ADD
FIELD command is described below.

Format

ADD FIELD field-name [OF { record | group-field }]
 [POSITION start]
 [SIZE characters]
 [OCCURS number-times
 [DEPENDING ON depend-field]]
 [TYPE { CHARACTER |
 BIT number |
 FLOAT |
 BINARY [DECIMAL places] |
 PACKED [DECIMAL places] [UNSIGNED] |
 ZONED [DECIMAL places]
 [UNSIGNED | [SEPARATE] LEADING]] }]
 [DATE 'format']
 [EDIT 'mask']
 [INITIAL value]
 [LIMITS (minimum TO maximum)]
 [RULE Business-rule]

Usage
The ADD FIELD command defines a CA-IDMS record field. The syntax is described in the MetaMap
Manager User Guide, and is not repeated in this supplement.
CA-IDMS field-definition information appears in both the IDMSRPTS Subschema Data Dictionary Listing
and the IDMSRPTS Subschema Record Description Listing.
Before generating MetaSuite application programs that reference the associated records, you must define any
fields named as storage-keyfields on ADD RECORD commands or index-field-names on ADD INDEX
commands, as well as any other fields referenced in your MetaSuite programs.

Example
In our example CUSTSS01 database, assume that the IDMSRPTS Subschema Data Directory Listing shows
the following information for the CUSTOMER record:

NAME LEVEL STRT LENGTH TYPE PICTURE
CUST-NUMBER 03 1 10 A/N X(10)
CUST-NAME 03 11 20 A/N X(20)
CUST-ADDRESS 03 31 40 GROUP
CUST-ADDR1 05 31 20 A/N X(20)
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

DEFINING A CA-IDMS DATABASE | 25
CUST-ADDR2 05 51 20 GROUP
CUST-CITY 06 51 15 A/N X(15)
CUST-ZIP 06 66 5 A/N X(5)
.

The ADD FIELD commands for this record would be coded as follows:

ADD FIELD CUST-NUMBER OF CUSTOMER POSITION 1 SIZE 10 TYPE CHARACTER
ADD FIELD CUST-NAME POSITION 11 SIZE 20 TYPE CHARACTER
ADD FIELD CUST-ADDRESS POSITION 31 SIZE 40 TYPE CHARACTER
ADD FIELD CUST-ADDR1 OF CUST-ADDRESS POSITION 1 SIZE 20 TYPE CHARACTER
ADD FIELD CUST-ADDR2 OF CUST-ADDRESS POSITION 21 SIZE 20 TYPE CHARACTER
ADD FIELD CUST-CITY OF CUST-ADDR2 POSITION 1 SIZE 15 TYPE CHARACTER
ADD FIELD CUST-ZIP OF CUST-ADDR2 POSITION 16 SIZE 5 TYPE CHARACTER
 .

Note: The positions of subfields to the MetaStore are specified relative to the beginning of the group
field, whereas in the IDMSRPTS Subschema Data Directory Listing, the positions of subfields are
specified as absolute positions within the record.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CHAPTER 6

Programming With MetaSuite File-
Access (IDMS)

6.1. Overview
This chapter describes how to use the MetaMap Manager commands that access information stored in a CA-
IDMS database.

• Data source commands define the SourceFile, ExternalArray and GlobalField objects to be used during the
program processing. For CA-IDMS SourceFiles, the SourceFilePath can specify how the CA-IDMS
records need to be accessed within the SourceFile.

• TargetFile objects define the output you want to generate.

• Procedural commands define the processing you want to occur, if any.
These program sections are described in detail in the MetaSuite User Guide and in the MetaSuite Reference
Guide.
The SourceFile objects may differ in use with a CA-IDMS SourceFile than with a non-database SourceFile.
Target objects are unaffected by access to a CA-IDMS SourceFile.
Note that the descriptions in this chapter use the MetaSuite terminology exclusively. The correspondences
between the MetaSuite and the CA-IDMS terminology are discussed in detail in the section Using MetaSuite
with a CA-IDMS database (page 14). These correspondences are summarized in the following table.

6.2. Programming Considerations
When coding a program that accesses a CA-IDMS database, you should be aware of the considerations below.

Accessing the database
In general, you access a CA-IDMS database as you would access a non-database SourceFile.

MetaSuite CA-IDMS

File Schema

Record Record type

Field Field

Index Index

Link Set
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 27
You define each subschema that you want to access through a SourceFile and a SourceFilePath object, whose
options define whether the database is to be accessed automatically by MetaSuite or through your procedural
code.
Besides the normal access methods, you can access a CA-IDMS database also through the known CA-IDMS
DML commands. In this case the CA-IDMS database needs to be defined by a 'Manual' CA-IDMS
SourceFile.
Note that the procedures you write for a SourceFile object can contain only one type of access command:
either MetaSuite DML commands (to access Manual SourceFiles) or GET commands (to access Controlled
SourceFiles), but not both.

Processing Sequence
You must be aware of the processing sequence of a MetaSuite program, to avoid issuing a database command
when no successful access is possible. For example, assume you try to access the CA-IDMS database from a
SourceFile initial procedure for another SourceFile. The access request will be unsuccessful, unless you have
already specified the SOURCEFILE command for the database, because the database has not yet been
opened. See the "Order of Execution" topic in the MetaSuite Reference Guide for information about program
processing sequence.

Navigating the Database
There are many ways to access a CA-IDMS database, some more efficient than others. The efficiency of your
program processing can be determined by the entry record you choose to begin your database retrieval, and the
methods you use to move from one record type to another within the path. If efficiency is a consideration,
consult your systems staff for assistance.

Program commands
The MetaMap Manager commands and most procedural commands are unaffected by the use of CA-IDMS
database SourceFiles. Refer to the MetaMap Manager User Guide for the syntax of these commands.
The following MetaSuite commands differ in their use with CA-IDMS databases, they are discussed in this
chapter:

EXCLUDE GET
EXIT HALT
SOURCEFILE START

In addition, there are commands specific to CA-IDMS that closely parallel the CA-IDMS Data
Manipulation Language (DML) commands, both in their syntax and in their use. All of these commands are
enclosed by the keywords EXEC-IDMS (translated to IDMS in the MSL, MetaSuite Specification
Language) and END-EXEC, and are collectively referred to as MetaSuite DML commands.

Efficiency Considerations
When processing a CA-IDMS database, you can save both processing and I/O time by using the START and
EXCLUDE commands.
The START command allows you to bypass unwanted entry records (and their related lower-level records).
If the SourceFilePath defined on the SourceFile accesses several SourceRecords, you can use the EXCLUDE
command in a record input procedure, to bypass processing for lower-level records in the SourceFilePath
hierarchy. This eliminates database accesses for the bypassed lower-level records.
If the SourceFile access is done through a 'CONTROLLED BY', you can use the EXCLUDE command to
prevent the building of a controlled set or to skip processing for a controlled set already built. Processing time
is improved by eliminating the overhead of constructing unwanted controlled sets.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 28
Instructions to use the MetaSuite DML commands, the MetaSuite commands whose processing differs when
accessing a CA-IDMS database, and commands that apply only to CA-IDMS databases appear in the
remaining sections of this chapter.

6.3. SourceFile
The options of the SourceFile objects are different for automatic, controlled (by) and manual SourceFiles:
Automatic SourceFile object:

SOURCEFILE SourceFile-name [PREFIX 'prefix']
SCHEMA schema-name VERSION version-number
DBNAME subschema-name
PATH (entry-record [VIA index-name]
[{,subordinate-record VIA link-name
 [OCCURS number times]} …])
[MATCH (match-key,…)]

Manual SourceFile object:

SOURCEFILE SourceFile-name [PREFIX 'prefix']
SCHEMA schema-name VERSION version-number
DBNAME subschema-name
 { MATCH (match-key,…) | CONTROLLED }
MANUAL

Controlled SourceFile object:

SOURCEFILE SourceFile-name [PREFIX 'prefix']
SCHEMA schema-name VERSION version-number
DBNAME subschema-name
CONTROLLED
PATH (entry-record [VIA index-name]
[{,subordinate-record VIA link-name
 [OCCURS number times]} …])

Controlled By SourceFile object:

SOURCEFILE SourceFile-name [PREFIX 'prefix']
SCHEMA schema-name VERSION version-number
DBNAME subschema-name
CONTROLLED BY controlling-SourceFile KEY = key-field
PATH (entry-record [VIA index-name]
[{,subordinate-record VIA link-name
[OCCURS number times]} …])

Each option is described separately on the following pages.

SourceFile-name
Names a SourceFile that has been defined to the MetaStore.

Prefix
Prefix-value is exactly four characters, including alphabetic characters, numbers, and embedded hyphens,
beginning with an alphabetic character.
The PREFIX option allows the same definitions to be used in multiple SourceFile objects. Note that each
reference to an object within the SourceFile will be prefixed with the PREFIX.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 29
Schema Name
Schema-name is the CA-IDMS schema that you want to use.

Version Number
Version-number is the version of the schema you want to use.

Subschema Name
Subschema-name is the GlobalField, whose value specifies the subschema and optionally the CA-IDMS
database you wish to access. The value of the GlobalField is previously set to the subschema and database that
is defined for the dictionary file in the MetaStore. Its value may be overwritten in a run-time parameter, but
should not be altered in procedural code.
The subschema-name is previously defined as:

FIELD WK-SourceFile-name TYPE CHARACTER SIZE 17
INITIAL 'dbname'

With dbname as Subschema-name[.IDMS-Database-name]

PATH

PATH (entry-record [VIA index-name]
 [{,subordinate-record VIA link-name
 [OCCURS number-times]}...])

The PATH option is part of the SOURCEFILE command.
It is mandatory for all IDMS SourceFiles except when the SourceFile is Manual. The SourceFilePath requests
that the generated program constructs a single unit of data, called a "path", from multiple related records in the
database. When this option is in effect, each time data is presented to the SourceFile initial procedure,
SourceFile input procedure, or any report (or TargetFile) input procedure, it is the path of data from the entry
record and its subordinate records that is presented rather than a single record.
When used with a subschema, the SourceFilePath identifies the particular database record types of interest
and the navigational path(s) to be used to retrieve the records, and expresses the relationships between the
records in hierarchical terms. Entry-record is the name of the "highest", or "first-level", record in the
hierarchy; that is, the record that indicates the entry point for the path. Each subordinate-record is the name
of a record related to the entry record or to another previously specified subordinate record.
Note that a link relationship must exist between each record and the next "lower" record in the path hierarchy.
The records named in the PATH specification are said to be either path records or associated records.
The hierarchical route through the records of the database, beginning with the entry record and ending with
the lowest-level subordinate record, is called a path. For example, a path through our example database might
begin at the CUSTOMER record, proceed to the INVOICE record, and end at the ITEM record. Each of
these three records is a path record.
An associated record relates to a path record, but does not itself participate in the path. For example, you could
associate the IREMARK record with the INVOICE record in the path example above. You define an
associated record using the OCCURS option (more on this below, under "Identifying Associated Records").
The rest of this discussion is broken down to provide a detailed description of each PATH specification option,
some examples of advanced path techniques, and a discussion of the Path Analysis Report for database
SOURCEFILE statements.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 30
Identifying the Entry Record and Its Access Technique

Entry-record [VIA index-name]

Required. Entry-record is the highest level record in the path hierarchy, the record at which the navigation
through the database begins.
Without the VIA option, MetaSuite retrieves the entry records in the sequence they were stored. For the
CUSTSS01 subschema, the following PATH specification requests processing for all CUSTOMER records:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (CUSTOMER,...)

With the VIA option, MetaSuite retrieves the entry records in sequence by the index-name. The named index
must be defined for the entry record, using the ADD INDEX dictionary command.
For example, to request that CUSTOMER records will be processed using the IX-CUST-NAME index, you
would code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (CUSTOMER VIA IX-CUST-NAME,...)

The CUSTOMER records are accessed in sequence by name. If the program reports require the data to be
sorted in customer name order, use of this SOURCEFILE command would eliminate the need for either a
SourceFile sort or a report/TargetFile sort.

MetaMap correspondence
The ViaIndex field is available in the PATH window.

Identifying Subordinate Records

subordinate-record VIA link-name

Optional. Subordinate-record names a record in the database that has a link relationship with the entry record or
a previously specified subordinate record. There can be up to 15 subordinate records specified following the
entry record.
Link-name names the relationship (set) that needs to be used to find the subordinate-record for an entry
record.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 31
Note that "subordinate" does not mean the record must be a member of a set owned by the previous record.
The subordinate record may be either the owner or member record of a set containing the previously named
record in the path.
For example, the following path specification requests CUSTOMER and INVOICE records:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (CUSTOMER, INVOICE VIA CUST-INVOICE)

The system retrieves a CUSTOMER record, then each of its INVOICE records, before retrieving the next
CUSTOMER record. With this SOURCEFILE command, a report containing the following detail line:

DETAIL 1 (CUST-NUMBER SHORT, INVOICE-NUMBER)

might print the following:

CUST INVOICE
NUMBER NUMBER
************ *******
16209121286 SC20221
 SC20344
 SC20401
2153522440 SC41532
 SC43456
2248374765 SC10293
 .

Alternatively, you could code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (INVOICE, CUSTOMER VIA CUST-INVOICE)

This SOURCEFILE command returns exactly the same information as the previous SOURCEFILE
command, except that the input data is in the storage order of the INVOICE records rather than the
CUSTOMER records. Depending on other program functions (such as sorting and record selection), relative
record population sizes and densities in the database, and the internal configuration of the database, one or the
other of these two PATH specifications might be more efficient. If efficiency is a consideration, consult with
your systems staff for advice.
Let's add a third record to the PATH specification:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (CUSTOMER, INVOICE VIA CUST-INVOICE,
 ITEM VIA INVOICE-ITEM)

MetaSuite would process this path by obtaining the first CUSTOMER record in the database, the first
INVOICE record for that CUSTOMER, and the first ITEM record for that INVOICE. These three records
would be available to the MetaSuite program procedures as the first path of data.
MetaSuite would next attempt to obtain another ITEM record for the same INVOICE, and would return the
new ITEM record, along with the old INVOICE and CUSTOMER. When there are no more ITEM records
for the current INVOICE, MetaSuite would obtain the next INVOICE record for the first CUSTOMER,
along with its first ITEM record. Similarly, when there are no more INVOICE records for the first
CUSTOMER, MetaSuite would obtain the next CUSTOMER record and process its INVOICE and ITEM
records as described above.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 32
MetaMap correspondence
The record set definition (or LINK) must be specified in the Relationship field of the subordinate path.

Identifying Associated Records

OCCURS number-times

Optional. The OCCURS option identifies the subordinate record as an associated record. A link relationship
must exist between the associated record and a preceding path record in the PATH specification. Number-
times is a number from 1 to 32,767 that indicates the number of occurrences of the record you want to retrieve.
To determine the number of occurrences of the record actually retrieved after each database access, reference
the system field record-name SYS-PATH-COUNT. See the MetaSuite Reference Guide for a description of
the use of the SYS-PATH-COUNT system field.
Using the same CUSTOMER, INVOICE, ITEM path described above, assume that you would also like to
access information from the first five IREMARK records for each INVOICE. You would code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (CUSTOMER,INVOICE VIA CUST-INVOICE,
 IREMARK VIA INVOICE-REMARK OCCURS 5,
 ITEM VIA INVOICE-ITEM)

MetaSuite processes the CUSTOMER, INVOICE, ITEM path as described above, except that each time a
new INVOICE record is obtained, up to five IREMARK records associated with the INVOICE record are
also obtained. Specifically, the path contains one CUSTOMER record, one INVOICE record, the first five
IREMARK records for the INVOICE, and one ITEM record.
MetaSuite automatically assumes that ITEM records are related to INVOICE records, because INVOICE is
the last non-OCCURS (that is, path) record, which precedes ITEM.
Note that references to the fields in an OCCURS record must have a subscript, to identify the particular
record occurrence desired. For example, if you want to access a field named IREMARK-SEQ in the third
occurrence of the IREMARK record, you might code:

IREMARK-SEQ (3) or IREMARK-SEQ (field-name)

where field-name is a numeric field having the value 3.

Example 1: Multiple Path
Assume that you want to retrieve information from INVOICE, IREMARK, and ITEM records. IREMARK
and ITEM records both have a link relationship with INVOICE. You might code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 33
 DBNAME WK-IDMSCUST
 PATH (INVOICE,IREMARK VIA INVOICE-IREMARK,
 ITEM VIA INVOICE-ITEM)

This PATH specification defines a multiple path. The first path includes the INVOICE and IREMARK
records. The second path includes the INVOICE and ITEM records.
During execution, this path contains an INVOICE record, and either an IREMARK record or an ITEM
record. You would use the system fields IREMARK SYS-PATH-COUNT and ITEM SYS-PATH-COUNT
to determine which type of record is present.
Note that for a given occurrence of the INVOICE record, all of its IREMARK records are returned before any
of its ITEM records. A program that prints INVOICE-NUMBER, IREMARK-SEQ, and ITEM-PROD-
NUMBER values using this PATH specification might produce the following output:

 INV ITEM
INVOICE REMARK PROD
NUMBER SEQ NUMBER
******* ****** ********
SC20221 01 CCC11111
 DDD22222
 DDD22255
SC42533 01

Example 2: Bill-of-Materials Paths
For this example, assume that you have a bill-of-materials structure. For a CA-IDMS database, this structure
is effected using two record types and two link types, as diagrammed here:

The MetaStore commands that define this structure are as follows:

ADD FILE IDMSBOMP TYPE IDMS SCHEMA BOMPSCHM VERSION 1
 DBNAME 'CUSTSS01'
ADD RECORD PART-MASTER OF (IDMSBOMP) SIZE 224
 STORAGE-AREA BOMPAREA STORAGE-KEY PART-NUMBER
ADD RECORD PART-JCT OF (IDMSBOMP) SIZE 16
 STORAGE-AREA BOMPAREA
ADD LINK PART-EXPL FROM PART-MASTER TO PART-JCT
 OPTIONAL
ADD LINK PART-IMPL FROM PART-MASTER TO PART-JCT
 OPTIONAL

The following MetaSuite SOURCEFILE command would be used to expand, or "explode", all part
descriptions down to three levels in the structure:

FIELD WK-IDMSBOMP TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSBOMP SCHEMA BOMPSCHM VERSION 1
 DBNAME WK-IDMSBOMP
 PATH (PART-MASTER,
 PART-JCT VIA PART-EXPL,
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 34
 PART-MASTER VIA PART-IMPL,
 PART-JCT VIA PART-EXPL,
 PART-MASTER VIA PART-IMPL)

The path analysis report (discussed below) for this SourceFile would be as follows:

PATH PATH RECORD ASSOCIATED RECORDS
**** *********** *********************
1 PART-MASTER (01)
 PART-JCT (01)
 PART-MASTER (02)
 PART-JCT (02)
 PART-MASTER (03)

A program containing this SOURCEFILE command might use the following code to produce a three-level
bill-of-materials explosion:

FIELD COMPONENT SIZE 12 TYPE CHARACTER
FIELD SUB-COMPONENT SIZE 12 TYPE CHARACTER
REPORT 1 PAGE (55,80)
DETAIL 1 (PART-NAME (1) SHORT, -
 COMPONENT SHORT, SUB-COMPONENT)
BEGIN REPORT 1 INPUT
CASE PART-MASTER SYS-PATH-COUNT -
 EQ 3 COMPONENT = PART-NAME (2) -
 SUB-COMPONENT = PART-NAME (3) -
 EQ 2 COMPONENT = PART-NAME (2) -
 SUB-COMPONENT = ' ' -
 ELSE (COMPONENT, SUB-COMPONENT) = ' '

Note that the SYS-PATH-COUNT field for the PART-MASTER record is checked to prevent non-current
values of the PART-NAME field being printed in the report.
This program might produce the following output:

PART COMPONENT SUB
NAME COMPONENT
**************** **************** ******************
CHICKEN NOODLE SOUP CHICKEN SOUP BASE DEHYD CHICKEN BROTH
 WATER
 CUBED CHICKEN
 NOODLE BLEACHED FLOUR
 EGG
 VEG SHORTENING
 WATER
 PACKAGE 112 CAN 322
 LABEL 123
 GLUE 224
CHICKEN RICE SOUP CHICKEN SOUP BASE DEHYD CHICKEN BROTH
 WATER
 CUBED CHICKEN
 WHITE RICE
 PACKAGE 114 CAN 322
 LABEL 124
 GLUE 224
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 35
The Path Analysis Report
Any time the PATH specification is coded, the program generator produces a Path Analysis Report,
summarizing the paths that have been specified.
For the following SOURCEFILE command, which defines a single path:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (CUSTOMER,INVOICE VIA CUST-INVOICE,
 IREMARK OCCURS 5 VIA INVOICE-IREMARK,
 ITEM VIA INVOICE-ITEM)

the path analysis report would look like this:

PATH PATH RECORDS ASSOCIATED RECORDS
**** ************* **********************
1 CUSTOMER
 INVOICE IREMARK (01 TO 05)
 ITEM

For the following SOURCEFILE command, which defines a multiple path:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (INVOICE,IREMARK VIA INVOICE-REMARK,
 ITEM VIA INVOICE-ITEM)

the path analysis report would look like this:

PATH PATH RECORDS ASSOCIATED RECORDS
**** ************* **********************
1 INVOICE
 IREMARK
2 INVOICE
 ITEM

Matching files

MATCH (match-key,…) [MANUAL]

The match-key allows you to view records from different SourceFiles simultaneously: match-key identifies the
SourceField or GlobalField whose value is used for match processing.
Match processing functions exactly as described for the SourceFile command in the MetaSuite Reference
Guide, with the exceptions noted below.
With the MANUAL option (on a Manual SourceFile), you must use MetaSuite DML commands to access
the CA-IDMS database in the SourceFile initial procedure. These DML commands must be done on a
SourceFile initial extract procedure, or on a SourceFile initial procedure when SortFields are defined on the
SourceFile.
For example, to match a (non-CA-IDMS) SourceFile containing sales statistics with salesperson information
in a CA-IDMS database, you might code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE YTD-SALES MATCH (YTD-SALESPERSON)
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (SALESPERSON) MATCH (SALES-NAME)
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 36
Controlled SourceFile

CONTROLLED [MANUAL]

The CONTROLLED option indicates that all access to the SourceFile is through procedural code, using the
MetaSuite GET command. The GET command allows you to retrieve one specified record or one path from
the CONTROLLED SourceFile.
For example, to define a SourceFile that you want to access using the GET command, you might code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST CONTROLLED
 PATH (SALESPERSON)

When a CONTROLLED SourceFile is used, after each GET command you should check the SourceFile
SYS-IO-STATUS, to detect whether the access has been successful. Please refer to the section Procedural
Commands (page 39) for returned values of the SYS-IO-STATUS.
The CONTROLLED MANUAL option indicates that all access to the database using the SourceFile is
through procedural code, using the MetaSuite DML commands. All the DML commands must be done from
SourceFile procedure of another SourceFile, or from a TargetFile procedure. You can not add SourceFile
procedures to CONTROLLED MANUAL SourceFiles. Please refer to the section MetaSuite CA-IDMS
DML Commands (page 49) for more information on the DML commands.

Controlled By SourceFile

CONTROLLED BY SourceFile-name KEY = control-key

The CONTROLLED BY option indicates that the records in the database are to be accessed based on values
in another SourceFile. SourceFile-name is the name of the (other) controlling SourceFile. Control-key is either
a field on the controlling SourceFile or a GlobalField whose value is determined in the SourceFile input
procedure for the controlling SourceFile.
You must define a SourceFile path to use the CONTROLLED BY option. The entry-record named in the
SourceFilePath must be a CALC record (that is, defined with a storage-keyfield) or an indexed record (whose
index-field-name was defined using the ADD INDEX directory command).
To process a CONTROLLED BY SourceFile, MetaSuite reads the controlling SourceFile and retrieves its
records, using the control-key value. MetaSuite builds a composite record, called a controlled set, consisting of
records from both SourceFiles.
The controlling SourceFile must define a single path. The path for either the controlled or controlling
SourceFile can include associated records; that is, subordinate-records in the SourceFile path that include the
OCCURS option.
The controlling SourceFile cannot be CONTROLLED itself, although it can be CONTROLLED BY
another SourceFile. You can nest CONTROLLED BY specifications for use up to 20 SourceFiles.
If the control-key is a field on the controlling SourceFile, the named field must be in a record in the lowest
level of the SourceFile path hierarchy. Specifically, the record must be the last non-occurring record, or an
OCCURS 1 record that follows the last non-occurring record, as defined in the SourceFilePath.
Note that a CONTROLLED BY SourceFile can not have an Initial Prepass or an Initial Extract procedure,
nor can it have SortFields defined. (that is, commands that require a second pass of the data).
When a CONTROLLED BY SourceFile is used, you should check the SourceFile SYS-IO-STATUS, to
detect whether the access has been successful. Please refer to the section Procedural Commands (page 39) for
returned values of the SYS-IO-STATUS.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 37
Example 1: Controlling Database Access from an External File
Write a program that prints the order information for sales region 2 in the database for customers in the
CUSTOMER-CONTROL SourceFile.
Assume that the CUSTOMER-CONTROL file contains CUSTOMER-NUMBER-CONTROL values,
and that the CUSTSS01 subschema contains CUSTOMER, INVOICE, and ITEM records. CUSTOMER
is a CALC record whose storage-keyfield is CUSTOMER-NUMBER.

Program Code

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE CUSTOMER-CONTROL
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 CONTROLLED BY CUSTOMER-CONTROL
 KEY = CUSTOMER-NUMBER-CONTROL
 PATH (CUSTOMER,INVOICE VIA CUST-INVOICE,
 ITEM VIA INVOICE-ITEM)
REPORT 1
.
.
BEGIN RECORD CUSTOMER INPUT
IF SALES-REGION NE 2 EXCLUDE
BEGIN REPORT 1 INPUT
IF CUSTOMER SYS-PATH-COUNT EQ 0 -
 PUT (bad control-key value detail line) -
 EXIT
IF INVOICE SYS-PATH-COUNT EQ 0 -
 PUT (no invoice data detail line) -
 EXIT
IF ITEM SYS-PATH-COUNT EQ 0 -
 PUT (no item data detail line) -
 EXIT
PUT (full data detail-line)

Discussion

MetaSuite reads the CUSTOMER-CONTROL SourceFile sequentially, and retrieves each CUSTOMER
record directly, with its related records. It uses the value of CUSTOMER-NUMBER-CONTROL (from the
CUSTOMER-CONTROL SourceFile) as the CALC key for the CUSTOMER record.
The CUSTOMER-CONTROL records can be in any sequence; they need not be sorted.
The record input procedure for the CUSTOMER record uses the EXCLUDE command to eliminate any
CUSTOMER records from sales regions other than 2. No INVOICE records are retrieved for eliminated
CUSTOMER records. All retrieved controlled sets are passed to report processing.
The report (or TargetFile) input procedure checks for the following conditions: a missing CUSTOMER
record (meaning that no CUSTOMER exists for a particular CUSTOMER-CONTROL-KEY value); a
CUSTOMER record that owns no INVOICE records; and an INVOICE record that owns no ITEM
records.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 38
The controlled sets available for report processing might be:

CUSTOMER-NUMBER
CONTROL CUSTOMER INVOICE ITEM
1620921286 1620921286 SC20221 CCC11111
 DDD22221
 DDD22225
 SC20344 CCC11233

All INVOICE and ITEM data for CUSTOMER 1620921286. If there are duplicate CUSTOMER records
(with the same key value), they would follow with their INVOICE and ITEM records.

2248374765 2248374765 SC41532 CCC22244

Example 2: Controlling Database Access from within the Database Itself
This example shows how to use the CONTROLLED BY option to retrieve database records, based on
CALC-key values stored in another record type in the same database.

Problem Statement

Produce a report that lists all customers and their invoices, along with the name of the salesperson that wrote
each invoice. Only process invoices written by salespeople in sales region 3.
Assume that the INVOICE record in the CUSTSS01 subschema has a field called INVOICE-WRITTEN-
BY, which is the CALC key of an associated SALESPERSON record defined in the same subschema.

Program Code

Use two SOURCEFILE commands for the CUSTSS01 subschema: one to access CUSTOMER and
INVOICE records, the other to access only SALESPERSON records. Use the PREFIX option to clarify
which entities are referenced by which FILE command.

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
FIELD WK-WRT-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (CUSTOMER,INVOICE VIA CUST-INVOICE)
SOURCEFILE IDMSCUST PREFIX 'WRT-' SCHEMA CUSTSCHM
 VERSION 1 DBNAME WK-WRT-IDMSCUST
 CONTROLLED BY IDMSCUST KEY = ORDER-WRITTEN-BY
 PATH (WRT-SALESPERSON)
REPORT 1
.
.
BEGIN RECORD CUSTOMER INPUT
IF WRT-SALES-REGION NE 3 EXCLUDE
BEGIN REPORT 1 INPUT
IF INVOICE SYS-PATH-COUNT EQ 0 -
 PUT (no invoice data detail line) -
 EXIT
IF WRT-SALESPERSON SYS-PATH-COUNT EQ 0 -
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 39
 PUT (no salesperson data detail line) -
 EXIT
PUT (full data detail-line)

Discussion

The CUSTOMER record input procedure excludes records for regions other than 3. MetaSuite does not build
controlled sets for the unwanted sales regions.
The report input procedure checks for the following conditions: a missing INVOICE record (that is, a
customer with no stored invoice information), and a missing SALESPERSON record (which means that the
ORDER-WRITTEN-BY information is incorrect).
The procedural code is the same as if there were a link between INVOICE and SALESPERSON (and they
were included together in the PATH specification)

6.4. Procedural Commands
Procedural commands tell MetaSuite what, if any, special processing is to be performed. Procedural code for a
program that accesses a CA-IDMS database can include any of the procedural commands described in the
MetaMap Manager User Guide. In certain cases, these commands differ in their use with CA-IDMS
SourceFiles, as described below.

Checking the Return Status
To check the status information returned to MetaSuite by CA-IDMS or returned by a MetaSuite DML
command, reference the following system fields:

This System field ... Contains the ...

SourceFile-name
SYS-INTERNAL-STATUS

CA-IDMS status code returned from the last request to CA-IDMS, using the
subschema specified by the DBNAME of the SourceFile.

SourceFile-name
SYS-IO-STATUS

I/O status code that you can check using one of the following constants:
SYS-OK indicates that a CA-IDMS status code of "0000" was returned, and
that the input record was successfully validated by MetaSuite. SYS-NOT-
RELATED indicates that the IF MEMBER command returns that the current
record is not a member of the set. SYS-ERROR indicates that a non-zero
CA-IDMS status code was returned, or that an input validation failed for a
successfully obtained record. In the case of a validation error, the
SourceFile-name SYS-INTERNAL-STATUS contains zeroes, and the data in
the record fields is unpredictable. SYS-EOF indicates that a HALT
SOURCEFILE command has been executed for the named SourceFile.

SYS-RECORD Name of the record most recently obtained. When you use the MetaSuite
DML commands to obtain a member record in a multi-member set using a
form of the IDMS OBTAIN command that does not specify a record name,
reference SYS-RECORD for the name of the record obtained.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 40
6.5. Command Summary
The MetaSuite commands used to access a CA-IDMS database are summarized below, then discussed
individually:

6.6. EXCLUDE
The following describes the EXCLUDE command and its use in accessing CA-IDMS databases.

Command Syntax

EXCLUDE [record-name | SourceFile-name]

Usage
The EXCLUDE command is used within a procedure, to bypass processing of the current record, or any
specified record of the SourceFile. This command operates a described in the MetaMap Manager User Guide,
except as noted below.
For a non-MANUAL SourceFile (that is, SOURCEFILE statement does not include the MANUAL
option), when an EXCLUDE command is processed within a SourceFile initial procedure for a SORT,
EXTRACT or PREPASS, or within a SourceFile input procedure, the procedure is exited (and the record is
bypassed). If the SourceFile has been HALTed, MetaSuite terminates the processing for the SourceFile. If the
SourceFile has not been HALTed, MetaSuite executes the path-building code for the SourceFile, then re-
executes the procedure, beginning with the first command. When the end-of-file condition is obtained,
MetaSuite terminates processing for the SourceFile.

This Command ... Is Used to ...

EXCLUDE Bypass processing of the current record and exit from the
current procedure. You can exclude the current record (no
subordinate records will be retrieved), the current path, or
the current path from a controlling SourceFile.

GET Read records from the database.

HALT ALL Stop all processing.

HALT SOURCEFILE Stop processing of one or more SourceFiles.

ACCEPT FROM CURRENCY Return the Db-key for the current record.

ACCEPT FROM OWNER CURRENCY Return the Db-key of the owner record, related to the
current record.

RELEASE Release data to the intermediate sort or extract SourceFile
(in a SourceFile initial procedure), or to the report (or
TargetFile) processing logic (in a SourceFile input
procedure).

START Position a SourceFile at a particular record before
beginning access.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 41
For a MANUAL subschema, when an EXCLUDE command is processed within a SourceFile initial
procedure for a SORT, EXTRACT or PREPASS, or within a SourceFile input procedure where no
SourceFile initial procedure for a SORT, EXTRACT or PREPASS has been previously defined, the procedure
is exited. If the SourceFile has been HALTed, MetaSuite terminates the processing for the SourceFile. If the
SourceFile has not been HALTed, MetaSuite re-executes the procedure, beginning with the first command.
Note that an EXCLUDE command within a SourceFile input procedure, that follows a SourceFile initial
procedure for a SORT or EXTRACT, performs the same as for a SourceFile input procedure for a non-
MANUAL subschema.
When an EXCLUDE command is processed within a record input procedure for a MANUAL SourceFile,
MetaSuite exits the procedure.

Bypassing Processing for a Record
The EXCLUDE command is most useful in a record input procedure for a multi-record SourceFile path. In
this case, you can use the EXCLUDE command, without the record-name or SourceFile-name options, to
bypass processing for a record before any lower-level records are read into the path. Processing time is
improved, because the overhead of constructing unwanted paths of records is eliminated.
We recommend that you use the EXCLUDE command in a record input procedure any time you want to
bypass processing for a record based on information in that record or a higher-level record in the path.
For example, assume that a program contains the following commands:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (CUSTOMER,INVOICE VIA CUST-INVOICE)
REPORT 1
DETAIL 1 (CUST-NUMBER SHORT,INVOICE-NUMBER)

The following report might be produced. The path number for each detail line is shown to the right.

CUST INVOICE
NUMBER NUMBER (path number)
********* *******
162092128 SC20221 (1)
 SC20344 (2)
 SC39374 (3)
207384949 SC49483 (4)
 SC25342 (5)
 SC47365 (6)
299430123 SC36254 (7)
 SC41092 (8)
303300928 SC20982 (9)

Nine paths are constructed from the CA-IDMS database records accessed.
To bypass any customer whose account number begins with the character "2", you would add the following
record input procedure to the program:

BEGIN RECORD CUSTOMER INPUT
IF CUST-NUMBER IR ('2000000000' TO '2999999999') -
 EXCLUDE

The report generated would contain only the information shown above in paths 1, 2, 3, and 9. MetaSuite
would not read the INVOICE records shown in paths 4 through 8, reducing the number of database access
requests by five.
If the decision to bypass processing for a record is based on information in other records in a path, use the
EXCLUDE command in a SourceFile initial or SourceFile input procedure, as described next.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 42
Bypassing Paths of Records

record-name

Optional and applicable only in SourceFile initial or SourceFile input procedures. The record-name option is
used when a PATH of records is being accessed, to identify the specific record type in the path in which you
are no longer interested. Record-name must be the name of a record specified in the PATH specification for
the SourceFile.
The system skips occurrences of any other record types until the next occurrence of the named (excluded)
record is encountered. Processing time is improved, because the overhead of constructing unwanted paths of
records is eliminated.
For example, assume that a program contains the same SOURCEFILE, REPORT, and DETAIL commands
shown above, under "Bypassing Processing for a Record". Also assume that the same report shown above, with
path numbers indicated, might be produced.
To bypass only customers that have an account number beginning with the character "2" and an invoice whose
invoice number begins with the characters "SC2", you would add the following SourceFile input procedure to
the program:

BEGIN SOURCEFILE IDMSCUST INPUT
IF CUST-NUMBER IR ('2000000000' TO '2999999999') -
 AND INVOICE-NUMBER IR ('SC20000' TO 'SC29999') -
 EXCLUDE CUSTOMER

The report generated would contain only the information shown above in paths 1, 2, 3, 7, 8, and 9. MetaSuite
would build paths 4, 5, and 6, but exclude them from processing.

Bypassing CONTROLLED BY Records

SourceFile-name

Optional, and applicable only on a CONTROLLED BY SourceFile and only in SourceFile input procedures.
The SourceFile-name option is used to identify the controlling SourceFile data in which you are not
interested. SourceFile-name is the name of a controlling SourceFile (defined through the CONTROLLED
BY option of the SOURCEFILE command).
For example, assume that a program contained the following code:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
FIELD WK-WRT-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (CUSTOMER,INVOICE VIA CUST-INVOICE)
SOURCEFILE IDMSCUST PREFIX 'WRT-' SCHEMA CUSTSCHM
 VERSION 1 DBNAME WK-WRT-IDMSCUST
 PATH (WRT-SALESPERSON)
 CONTROLLED BY IDMSCUST KEY = ORDER-WRITTEN-BY
REPORT 1
DETAIL 1 (CUSTOMER-NUMBER SHORT,INVOICE-NUMBER, -
 WRT-SALES-REGION,WRT-SALESPERSON)

The following report might be produced. The controlled set number for each detail line is shown to the right.

CUST INVOICE WRT
NUMBER NUMBER SALESPERSON (set number)
********* ******* ***********
162092128 SC20221 JONES (1)
 SC20344 BLACK (2)
 SC39374 REYES (3)
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 43
207384949 SC49483 CHANG (4)
 SC25342 SMITH (5)
 SC47365 KELLY (6)
299430123 SC36254 GABLE (7)
 SC41092 HERON (8)
303300928 SC20982 HAMON (9)

Nine controlled sets were constructed from the CA-IDMS database records accessed.
If you wanted to process salespersons from the Southwest region only, you could add the following SourceFile
input procedure code:

BEGIN SOURCEFILE WRT-IDMSCUST INPUT
IF WRT-SALES-REGION NE 3 -
 EXCLUDE IDMSCUST

This procedure checks the sales-region value in the SALESPERSON record, and if it is not the desired
regions, excludes the current records from the higher-level IDMSCUST SourceFile from processing.
MetaSuite retrieves the next INVOICE record, which in turn causes the lower-level (WRT-IDMSCUST)
SourceFile processing to retrieve a new SALESPERSON record. The report output would include only the
sales persons from region 3.

6.7. EXIT
The following describes the EXIT command and its use in accessing CA-IDMS databases.

Command Syntax

EXIT

Usage
The EXIT command leaves the current procedure and returns to the "calling" procedure. This command
operates as described in the MetaMap Manager User Guide, except as detailed below.
For a MANUAL SourceFile, EXIT processing is the same as for a non-MANUAL SourceFile, except that:

• If the SourceFile initial procedure defines a SORT or EXTRACT, and it contains:

- No RELEASE command, MetaSuite releases a record to the sort or extract SourceFile that contains
the current values of all referenced fields from the MANUAL SourceFile, as well as any necessary sort-
key values, when it executes an EXIT command.

- One or more RELEASE commands, MetaSuite does not release a record to the sort or extract
SourceFile when it executes an EXIT command.

If processing for the SourceFile has not been HALTed, processing continues at the first command of the
SourceFile initial procedure. If processing for the SourceFile has been HALTed, processing terminates.

• If the SourceFile initial procedure does not include a SORT or EXTRACT command, and the SourceFile
input procedure includes an EXIT command and it contains:

- No RELEASE command, MetaSuite executes the report input logic when it executes an EXIT
command.

- One or more RELEASE commands, MetaSuite does not execute the report input logic when it
executes the EXIT command.

If processing for the SourceFile has not been HALTed, processing continues at the first command of the
SourceFile input procedure. If processing for the SourceFile has been HALTed, processing terminates.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 44
6.8. GET
The following describes the GET command and its use in accessing CA-IDMS databases.

Command Syntax

GET {record-name | SourceFile-name}
 [KEY = keyfield-value]

Usage
The GET command is used to read records in a CA-IDMS database from within procedural code.
Except as described below, the options of the GET command, when used with a CA-IDMS database, are the
same as for non-database SourceFiles.

Identifying the Record(s) to be Read

{record-name | SourceFile-name}

Required. You must specify either the SourceFile-name or the entry record name from the PATH option.

Specifying the Access Key Value

KEY = keyfield-value

Optional. The KEY option specifies that MetaSuite is to retrieve the record(s) based on a keyfield value.
Keyfield-value must be a literal or the name of a field of the same general data type (alphanumeric or numeric)
as the access keyfield of the record to be obtained.
If the GET command names a record, it must be a CALC or indexed record. If the GET command names a
SourceFile, the entry record in the SourceFilePath must be a CALC or indexed record. In the case of an
indexed entry record, the VIA option must be included in the PATH specification, to name the index.
Keyfield-value is the CALC-key or index-field-name value, as appropriate.

Combining SOURCEFILE and GET Command Syntax Options
The processing performed by MetaSuite for a GET command depends on the combination of
SOURCEFILE and GET command options specified for the CA-IDMS SourceFile being accessed, as
summarized below.

GET KEY VIA Index GET Retrieves ...

NO NO The next occurrence of the entry record, as stored in the database. The path is
refilled.

NO YES The next occurrence of the entry record in index set sequence. The path is
refilled.

YES NO The (CALC) entry record occurrence containing the specified key value in its
storage-keyfield. The path is refilled.

YES YES The entry record occurrence containing the specified key value in its index-
name-field. The path is refilled.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 45
Example 1: Retrieving a CALC Record

The following code uses the GET command to retrieve a CALC record, using a CALC-key value:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 CONTROLLED
 PATH (CUSTOMER)
 .
 .
 .
GET CUSTOMER KEY = '2903837698'
IF IDMSCUST SYS-IO-STATUS EQ SYS-ERROR -
 CUST-NAME = 'NOT FOUND'

The CUSTOMER record was defined to the dictionary with CUST-NUMBER, a 10-character alphanumeric
field, specified as the storage-keyfield.
If the CUSTOMER record with the desired storage-key is not found in the database, the name prints as
'NOT FOUND'.

Example 2: Retrieving an Indexed Record

The following code uses the GET command to retrieve a CUSTOMER record, using the index IX-CUST-
NAME:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 PATH (CUSTOMER VIA IX-CUST-NAME)
 .
 .
GET CUSTOMER KEY = 'HUDSON RIVER SPRINGS'
IF IDMSCUST SYS-INTERNAL-STATUS EQ '0326' -
 CUST-NAME = 'NOT FOUND'

If the CUSTOMER record is not found, 'NOT FOUND' appears in the name field.

Example 3: Retrieving a Path of Records

The following code uses the GET command to retrieve a path of records for the IDMSCUST SourceFile:

FIELD WK-IDMSCUST TYPE CHARACTER SIZE 17 INITIAL 'CUSTSS01'
SOURCEFILE IDMSCUST SCHEMA CUSTSCHM VERSION 1
 DBNAME WK-IDMSCUST
 CONTROLLED
 PATH (CUSTOMER, INVOICE VIA CUST-INVOICE,
 ITEM VIA INVOICE-ITEM OCCURS 45)
 .
 .
GET CUSTOMER KEY = '2903837698'
IF IDMSCUST SYS-IO-STATUS EQ SYS-ERROR -
 CUST-NAME = 'NOT FOUND'
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 46
This GET command retrieves the same entry record as the first example, as well as the first INVOICE record
for that CUSTOMER and up to 45 ITEM records (beginning with the first record) for that INVOICE. The
number of ITEM records actually retrieved is in the system field, ITEM SYS-PATH-COUNT, following the
execution of each GET command.

6.9. HALT ALL
The following describes the HALT ALL command and its use in accessing CA-IDMS databases.

Command Syntax

HALT ALL

Usage
The HALT ALL command stops all processing. This command operates identically to the HALT ALL
command described in the MetaMap Manager User Guide, except that it also issues a FINISH request to the
CA-IDMS database system for all subschemas defined by the SourceFiles currently in use.

6.10. HALT SOURCEFILE
The following describes the HALT SOURCEFILE command and its use in accessing CA-IDMS databases.

Command Syntax

HALT SOURCEFILE [(SourceFile-name,...)

Usage
The HALT SOURCEFILE command halts the processing of one or more SourceFiles. This command
operates identically to the HALT SOURCEFILE command described in the MetaMap Manager User Guide,
except that MetaSuite issues a FINISH request to CA-IDMS for the subschemas defined by the SourceFiles.

Identifying the SourceFile(s) to Be Halted

(SourceFile-name,...)

Optional. SourceFile-name identifies the SourceFile whose processing is being halted. It must specify a
SourceFile that does not include the CONTROLLED option.
If SourceFile-name is omitted from the command within a SourceFile procedure, it defaults to the SourceFile
within whose (SourceFile Initial or SourceFile Input) procedure the command is contained.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 47
6.11. ACCEPT FROM CURRENCY
The following describes the IDMS DML ACCEPT FROM CURRENCY command and its use in accessing
CA-IDMS databases.

Command Syntax

EXEC-IDMS
 ACCEPT field-name FROM record-name CURRENCY
END-EXEC

Usage
This CA-IDMS DML Command can be used on Automatic SourceFiles to obtain the DB-Key of the current
record being processed. Please refer to MetaSuite CA-IDMS DML Commands (page 49) for further usage.

6.12. IDMS ACCEPT FROM SET
The following describes the IDMS DML ACCEPT FROM SET command and its use in accessing CA-
IDMS databases.

Command Syntax

EXEC-IDMS
 ACCEPT field-name FROM set-name OWNER CURRENCY
END-EXEC

Usage
This CA-IDMS DML Command can be used on Automatic SourceFiles to obtain the DB-Key of the owner
within the specified set of the current record being processed. Please refer to the section MetaSuite CA-IDMS
DML Commands (page 49) for further usage.

6.13. RELEASE
The following describes the RELEASE command and its use in accessing CA-IDMS databases.

Command Syntax

RELEASE

Usage
Please refer to MetaSuite CA-IDMS DML Commands (page 49) for usage.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

PROGRAMMING WITH METASUITE FILE-ACCESS (IDMS) | 48
6.14. START
The following describes the START command and its use in accessing CA-IDMS databases.

Command Syntax

START {record-name | SourceFile-name}
 KEY = start-key

Usage
The START command is used to begin database access at a particular indexed record, by specifying a value for
the index-field-name for the record. In this way, you can bypass the preceding records in the index.
Be aware that it is very easy to put your program into an infinite loop through improper use of the START
command. See the discussion of the START command in the MetaMap Manager User Guide for more on this.

Identifying the Record or Subschema

{record-name | SourceFile-name}

Required. SourceFile-name or the entry record name from the PATH option may be specified. The entry
record must be indexed and include the VIA index-name option, to name the index you want to use.

Specifying the Starting Position

KEY = start-key

Required. The KEY option specifies the index key value less than or equal to the key value of the first record to
be processed. Start-key may be either a literal or the name of a field of the same general data type
(alphanumeric or numeric) as the index-field-name for the index to be used.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

CHAPTER 7

MetaSuite CA-IDMS DML
Commands

7.1. Overview
The MetaSuite DML commands, each enclosed between the keywords EXEC-IDMS and END-EXEC
(translated to IDMS in the MSL, MetaSuite Specification Language), allow you to access the database using
syntax that closely parallels CA-IDMS DML commands.
You can use the MetaSuite DML commands, in any type of procedure, for any CA-IDMS SourceFile that
includes the MANUAL specification. An exception is if the SourceFile initial procedure for a MANUAL
SourceFile contains the SORT or EXTRACT command. In this case, you can use these commands only
within that SourceFile initial procedure.
When using the CA-IDMS OBTAIN commands, be aware of the following considerations:

• Your procedure logic must ensure the appropriate currencies within the database.
If you code a CA-IDMS OBTAIN command for a SourceFile whose MANUAL specification does not
include the CONTROLLED option, you must include a HALT command at the appropriate processing
point. If you do not include a HALT command, a processing loop can occur. MetaSuite does not verify that
the HALT command is coded in the program.

7.2. Checking the Return Status
To check the status information returned by a MetaSuite DML command, reference the SourceFile-name
SYS-INTERNAL-STATUS, SourceFile-name SYS-IO-STATUS, and SYS-RECORD system fields, as
described in the previous chapter.

7.3. Command Summary
The MetaSuite DML commands used to access a CA-IDMS database are summarized below, then discussed
individually:

This Command ... Is Used to ...

ACCEPT field-name FROM CURRENCY Return the Db-key for the current record of a specified type
or the current record in a specified set.

ACCEPT field-name FROM set-name Return the Db-key of the next, prior, or owner record, related
to the current record of a specified set.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

METASUITE CA-IDMS DML COMMANDS | 50
In addition, note discussion in the previous chapter regarding the use of the following commands with a
MANUAL SourceFile:

• EXCLUDE

• EXIT

7.4. ACCEPT FROM CURRENCY
The following describes the ACCEPT FROM CURRENCY command and its use in accessing CA-IDMS
databases.

Command Syntax

EXEC-IDMS
 ACCEPT field-name FROM {CURRENCY |
record-name CURRENCY |
set-name CURRENCY}
END-EXEC

Usage
This form of the ACCEPT command returns the Db-key for the current record for a SourceFile, or the
current record of a specified record type.
If the program accesses the database using multiple SourceFiles whose SOURCEFILE commands include the
MANUAL or CONTROLLED MANUAL option, it is recommended that you include the record-name or
set-name specification here.

Identifying the GlobalField for the Db-key

field-name

IF Test for the presence of member records in a set, and
determine whether a record is a member of a set.

OBTAIN DB KEY Obtain a record directly, using a Db-key value.

OBTAIN CURRENCY Obtain the current record of a specified type or within a
specified set.

OBTAIN WITHIN set Obtain a record in a named set.

OBTAIN WITHIN area Obtain a record in a named area.

OBTAIN OWNER Obtain the owner record of a named set.

OBTAIN CALC/DUPLICATE Obtain a CALC record, using its CALC-key value.

OBTAIN WITHIN set USING sort-key Obtain a record in a sorted set, using its sort-key value.

RELEASE Release data to the intermediate sort or extract SourceFile
(in a SourceFile initial procedure), or to the report (or
TargetFile) processing logic (in a SourceFile input procedure).

This Command ... Is Used to ...
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

METASUITE CA-IDMS DML COMMANDS | 51
Required. Field-name is the name of the 4-byte binary GlobalField in which you want the requested Db-key
returned.

Requesting the Db-key of the Current Record

CURRENCY

Optional. The CURRENCY option returns the Db-key of the current record for a SourceFile. The Db-key
returned depends on where the command is coded. If the command appears within:

• Any SourceFile procedure whose SOURCEFILE command includes the MANUAL option, the system
returns the Db-key for the current record for the SourceFile.

• Any other procedure type, the system determines the first SOURCEFILE command that includes the
MANUAL or CONTROLLED MANUAL option, and returns the Db-key of the current record for that
SourceFile.

Specifying a Record Name

record-name CURRENCY

Optional. This option returns the Db-key of the current record of the type specified by record-name. If the
PREFIX option was specified on the SOURCEFILE command for the SourceFile that includes the record
type, you must include the prefix in the record name.
For example, to request that the Db-key of the current CUSTOMER record be returned in the field CUST-
DB-KEY, you would code:

EXEC-IDMS ACCEPT CUST-DB-KEY FROM CUSTOMER CURRENCY END-EXEC

Specifying a Set Name

set-name CURRENCY

Optional. The option returns the Db-key of the current record for the set specified by set-name. If the
PREFIX option was specified on the FILE command for the subschema that includes the set, you must
include the prefix in the set name.
For example, to request that the Db-key of the current record for the CUST-SALES set be returned in the
field CUST-SALES-KEY, you would code:

EXEC-IDMS ACCEPT CUST-SALES-KEY FROM CUST-SALES CURRENCY END-EXEC

7.5. ACCEPT FROM SET
The following describes the ACCEPT FROM SET command and its use in accessing CA-IDMS databases.

Command Syntax

EXEC-IDMS
 ACCEPT field-name FROM set-name
 {NEXT | PRIOR | OWNER} CURRENCY
END-EXEC
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

METASUITE CA-IDMS DML COMMANDS | 52
Usage
This form of the ACCEPT command returns the Db-key of the next, prior, or owner record, relative to the
current record of a specified set.

Identifying the GlobalField for the Db-key

field-name

Required. Field-name is the name of the 4-byte binary GlobalField in which you want the requested Db-key
returned.

Identifying the Set

FROM set-name

Required. Set-name is the name of the set that you want processed. If the PREFIX option was specified on the
SOURCEFILE command for the SourceFile that includes the set, you must include the prefix in the set
name.

Specifying the Record

{NEXT | PRIOR | OWNER} CURRENCY

Required. NEXT returns the Db-key for the next record in the set specified by set-name. PRIOR returns the
Db-key for the prior record in the specified set. OWNER returns the Db-key for the owner record in the
specified set.

7.6. IF MEMBER
The following describes the IF MEMBER command and its use in accessing CA-IDMS databases.

Command Syntax

EXEC-IDMS
 IF {[NOT] set-name MEMBER |
set-name IS [NOT] EMPTY}
END-EXEC

Usage
The IF command is used for either of the following purposes:

• To determine whether a record is a member of an optional set.

• To determine whether there are member records in an optional set.
To check the results of an IF command, use the MetaSuite status code returned by the command in
SourceFile-name SYS-IO-STATUS or the CA-IDMS status code returned in SourceFile-name SYS-
INTERNAL-STATUS, as described for each command option. For information about CA-IDMS status
codes, see the CA-IDMS Programmer's Reference Guide - COBOL, " Computer Associates.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

METASUITE CA-IDMS DML COMMANDS | 53
Testing a Record for Set Membership

[NOT] set-name MEMBER

Optional. This option determines whether or not the current record for a SourceFile is a member of the set
specified by set-name. The set named must be an optional set. If the PREFIX option was specified on the
SOURCEFILE command for the SourceFile that includes the set, you must include the prefix in the set
name.
The optional NOT specification is available for documentation purposes only. The processing for the
command is unaffected by inclusion of the NOT option.
The command returns a status code as follows:

For example, to test whether the current record is a member of the INVOICE-IREMARK set, code:

EXEC-IDMS IF INVOICE-IREMARK MEMBER END-EXEC

Testing a Set for Member Records

set-name IS [NOT] EMPTY

Optional. This option determines whether or not the current owner of the set specified by set-name owns any
member records (that is, whether or not the set is empty). The set named must be an optional set. If the
PREFIX option was specified on the SOURCEFILE command for the SourceFile that includes the set, you
must include the prefix in the set name.
The optional NOT specification is available for documentation purposes only. The processing for the
command is unaffected by inclusion of the NOT option.
The command returns a status code as follows:

For example, to test whether the current INVOICE record owns any member IREMARK records in the
INVOICE-IREMARK set, code:

EXEC-IDMS IF INVOICE-IREMARK IS EMPTY END-EXEC

SourceFile-name
SYS-IO-STATUS

SourceFile-Name
SYS-INTERNAL-STATUS

Meaning

SYS-OK 0000 Record is a member of the set.

SYS-NOT-RELATED 1601 Record is not a member of the set.

SYS-ERROR 1606, 1608, or 1613 An error has occurred

SourceFile-name
SYS-IO-STATUS

SourceFile-name SYS-
INTERNAL-STATUS

Meaning

SYS-OK 0000 Set is empty.

SYS-ERROR 1601, 1606, 1608, or 1613 Set is not empty.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

METASUITE CA-IDMS DML COMMANDS | 54
7.7. OBTAIN DB-KEY IS
The following describes the OBTAIN DB-KEY IS command and its use in accessing CA-IDMS databases.

Command Syntax

EXEC-IDMS
 OBTAIN record-name DB-KEY IS field-name
END-EXEC

Usage
This for of the OBTAIN command obtains a record directly, using a Db-key value.

Specifying a Record Name

record-name

Required. Record-name identifies the type of record you want to obtain. The record named must be included in
a SourceFile whose SOURCEFILE command specifies the CONTROLLED MANUAL options. If the
PREFIX option was specified on the SOURCEFILE command, you must include the prefix in the record
name.

Identifying the GlobalField for the Db-key

DB-KEY IS field-name

Required. Field-name is the name of the field that contains the Db-key of the record you want to obtain. The
field named must be a 4-byte binary GlobalField.

7.8. OBTAIN CURRENT WITHIN SET
The following describes the OBTAIN CURRENT WITHIN SET command and its use in accessing CA-
IDMS databases.

Command Syntax

EXEC-IDMS
 OBTAIN CURRENT [record-name | WITHIN set-name]
END-EXEC

Usage
This form of the OBTAIN command obtains the current record for a SourceFile, or the current record of a
specified record type or a specified set.
If the program accesses the database using multiple SourceFiles whose SOURCEFILE commands include the
CONTROLLED MANUAL option, it is recommended that you include the record-name or WITHIN set-
name option in the command.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

METASUITE CA-IDMS DML COMMANDS | 55
Requesting the Current Record for a Subschema
Without the record-name or WITHIN set-name options, the command obtains the current record for a
SourceFile. The record obtained depends on where the command is coded. If the command appears within:

• Any SourceFile procedure for a SourceFile whose SOURCEFILE command includes the MANUAL
option, the system returns the current record for the SourceFile.

• Any other procedure type, the system determines the first SOURCEFILE command for a SourceFile that
includes the CONTROLLED MANUAL option, and returns the current record for that SourceFile.

Specifying a Record Name

record-name

Optional. This option returns the current record of the type specified by record-name. If the PREFIX option
was specified on the SOURCEFILE command for the SourceFile that includes the record type, you must
include the prefix in the record name.
For example, to request that the current CUSTOMER record be obtained, code:

EXEC-IDMS OBTAIN CURRENT CUSTOMER END-EXEC

Specifying a Set Name

WITHIN set-name

Optional. This option returns the current record for the set specified by set-name. If the PREFIX option was
specified on the SOURCEFILE command for the SourceFile that includes the set, you must include the
prefix in the set name.
For example, to request that the current record for the CUST-SALES set be obtained, code:

EXEC-IDMS OBTAIN CURRENT WITHIN CUST-SALES END-EXEC

7.9. OBTAIN WITHIN SET
The following describes the OBTAIN WITHIN SET command and its use in accessing CA-IDMS databases.

Command Syntax

EXEC-IDMS
 OBTAIN {NEXT | PRIOR | LAST | FIRST | count-field}
 [record-name] WITHIN set-name
END-EXEC

Usage
This form of the OBTAIN command obtains a record, relative to the current record in a named set.

Specifying the Relative Record to Obtain

{NEXT | PRIOR | LAST | FIRST | count-field}
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

METASUITE CA-IDMS DML COMMANDS | 56
Required. These specifications determine the record to be obtained, relative to the current record of the set.
NEXT, PRIOR, FIRST, and LAST obtain the next, prior, first, and last record in the set, respectively.
Count-field obtains the nth record in the set, relative to the current record, using the number contained in the
count field. Count-field must be a numeric field that contains a non-zero whole number. If the number is
positive, the system obtains the nth record in the "next" direction. If the number is negative, the system obtains
the nth record in the "prior" direction. If count-field contains a negative number, the set must contain prior
pointers.

Specifying a Record Name

record-name

Optional. Record-name identifies the type of record you want to obtain. If the PREFIX option was specified on
the SOURCEFILE command for the SourceFile that includes the record, you must include the prefix in the
record name.
Without the record-name option, the command obtains the next record in the set, regardless of its type. The
SYS-RECORD system GlobalField contains the name of the record obtained.

Specifying the Set

WITHIN set-name

Required. Set-name is the name of the set from which you want to obtain a record. If the PREFIX option was
specified on the SOURCEFILE command for the SourceFile that includes the set, you must include the
prefix in the set name.

7.10. OBTAIN WITHIN AREA
The following describes the OBTAIN WITHIN AREA command and its use in accessing CA-IDMS
databases.

Command Syntax

EXEC-IDMS
 OBTAIN {NEXT | PRIOR | LAST | FIRST | count-field}
record-name WITHIN area-name
END-EXEC

Usage
This form of the OBTAIN command obtains a record, relative to the current record in a named area.

Specifying the Relative Record to Obtain

{NEXT | PRIOR | LAST | FIRST | count-field}

Required. These specifications determine the record to be obtained, relative to the current record of a specified
type in the area. NEXT, PRIOR, FIRST, and LAST obtain the next, prior, first, and last record, respectively,
of the type specified by record-name.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

METASUITE CA-IDMS DML COMMANDS | 57
Count-field obtains the nth record of the specified type, relative to the current specified record, using the
number contained in the count field. Count-field must be a numeric field that contains a non-zero whole
number. If the number is positive, the system obtains the nth record in the "next" direction. If the number is
negative, the system obtains the nth record in the "prior" direction. If count-field contains a negative number,
the set must contain prior pointers.

Specifying a Record Name

record-name

Required. Record-name identifies the type of record you want to obtain. If the PREFIX option was specified on
the SOURCEFILE command for the SourceFile that includes the record, you must include the prefix in the
record name.

Specifying the Area

WITHIN area-name

Required. Area-name is the name of the area from which you want to obtain a record. If the PREFIX option
was specified on the SOURCEFILE command for the SourceFile that includes the record, you must include
the prefix in the area name.

7.11. OBTAIN OWNER WITHIN SET
The following describes the OBTAIN OWNER WITHIN SET command and its use in accessing CA-IDMS
databases.

Command Syntax

EXEC-IDMS
 OBTAIN OWNER WITHIN set-name
END-EXEC

Usage
This form of the OBTAIN command obtains the owner of the current occurrence of a specified set.

Specifying a Set Name

set-name

Required. Set-name identifies the set for which you want to obtain the owner. If the PREFIX option was
specified on the SOURCEFILE command for the SourceFile that owns the set, you must include the prefix in
the set name.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

METASUITE CA-IDMS DML COMMANDS | 58
7.12. OBTAIN RECORD-NAME
The following describes the OBTAIN RECORD-NAME command and its use in accessing CA-IDMS
databases.

Command Syntax

EXEC-IDMS
 OBTAIN {CALC | ANY | DUPLICATE} record-name
END-EXEC

Usage
This form of the OBTAIN command obtains a CALC record, using its CALC-key value. You must have
previously assigned the CALC-key value to the appropriate storage-keyfield for the record.

Specifying Which Record to Obtain

{CALC | ANY | DUPLICATE}

Required. These options determine the record to be obtained. CALC and ANY are synonymous and obtain
the first occurrence of the record type whose CALC key matches the value in the storage-keyfield for the
record type.
UPLICATE obtains the next record with the same CALC-key value as the current record of the specified
type. To use the DUPLICATE option, you must first obtain a record with the same CALC-key value, using
the CALC or ANY option.

Specifying a Record Name

record-name

Required. Record-name identifies the type of CALC record you want to obtain. If the PREFIX option was
specified on the SOURCEFILE command for the SourceFile that includes the record type, you must include
the prefix in the record name.

7.13. OBTAIN WITHIN SET USING SORT KEY
The following describes the OBTAIN WITHIN SET USING SORT KEY command and its use in accessing
CA-IDMS databases.

Command Syntax

EXEC-IDMS
 OBTAIN record-name WITHIN set-name [CURRENT]
 USING sort-key
END-EXEC

Usage
This form of the OBTAIN command obtains a record in a sorted set, using its sort-key value.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

METASUITE CA-IDMS DML COMMANDS | 59
Specifying a Record Name

record-name

Required. Record-name identifies the type of record you want to obtain. If the PREFIX option was specified on
the SOURCEFILE command for the SourceFile that includes the record type, you must include the prefix in
the record name.

Specifying a Set Name

WITHIN set-name [CURRENT]

Required. Set-name is the name of the set that you want to process. The set named must be a sorted set. If the
PREFIX option was specified on the SOURCEFILE command for the SourceFile that owns the set, you
must include the prefix in the set name.
Within the CURRENT option, the command begins the search for the record from the current record for the
set. Without this option, the command begins the search with the current owner record for the set.

Specifying the Sort-Key Value

USING sort-key

Required. Sort-key is the sort-control field for the record. You must ensure that this field contains the sort-key
value of the record to be obtained, before using the command. Be aware that MetaSuite cannot verify the
named field as the sort-key field defined for the set.
If the PREFIX option was specified on the SOURCEFILE command for the SourceFile that owns the record
and set, you must include the prefix in the sort-key name.

7.14. RELEASE
The following describes the RELEASE command and its use in accessing CA-IDMS databases.

Command Syntax

RELEASE

Usage
The RELEASE command releases data from a MANUAL SourceFile to the intermediate sort or extract
SourceFile (in a SourceFile initial procedure), or to the report processing logic (in a SourceFile input
procedure). In the latter case, the data is processed for each requested report, in report number sequence.
You must include this command within either:

• A SourceFile initial procedure for a MANUAL SourceFile, or

• A SourceFile input procedure for a MANUAL SourceFile whose SourceFile initial procedure contains no
SORT or EXTRACT commands.

If you include one or more RELEASE commands within a procedure, the system releases the file data to the
intermediate file or report processing logic only when a RELEASE command is executed. If you do not
include a RELEASE command within a procedure, MetaSuite automatically releases the data at the end of
the procedure, or when an EXIT command is executed.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX A

Appendix A - MetaStore Manager
Collect for CA-IDMS

A.1. Overview

This chapter introduces the Collect File functionality of the MetaStore Manager to capture CA-IDMS
definitions from IDD. You should be familiar with the CA-IDMS concepts presented in the section CA-
IDMS Concepts and Terminology (page 4) before reading this chapter.
The relationships between the basic MetaSuite and CA-IDMS terms are as follows:

MetaSuite and CA-IDMS Terms

A.2. IDMS SCHEMA

When starting the Collect File functionality of the MetaStore Manager, the option "IDMS Schema punch"
represents a possibility to transform CA-IDMS IDD definitions into MetaSuite format.

Source information

You will first need to produce a Schema punch from the CA-IDMS IDD. This can be done by the following
example JCL:
The input is an IDMS punch of your schema as a result of the following example JCL for z/OS:

Metasuite CA-IDMS

File Schema

Record Record Type

Field Field

Index CA-IDMS Index

Link CA-IDMS set
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS | 61
//IDMSCHEM EXEC PGM=IDMSCHEM
//SYSCTL DD DSN=IDMS-SYSCTL-filename,DISP=SHR
//SYSUDUMP DD SYSOUT=R
//SYSLST DD SYSOUT=R
//SYSPCH DD SYSOUT=R
//SYSIPT DD *
SIGNON … DICTNAME IS IDMS-DatabaseName
PUNCH SCHEMA NAME IS Schemaname VERSION HIGH
WITH AREAS
ALSO WITH RECORDS
ALSO WITH ELEMENTS
ALSO WITH DETAILS
ALSO WITH SETS
AS SYNTAX

The result of this JCL will need to be transferred to your workstation, so that it is available as source for
MetaStore Manager.

IDMS File Information

When starting the "IDMS Schema" collect option, you will need to specify the filename of the result of the
PUNCH IDMS.
During the capture of file definition, IDMS File Information will be asked. It consists of 3 types of
information:

• File Name

• Subschema Name

• Database Name

File Name

The Filename of the IDMS file as it will be stored in the MetaStore.

Subschema Name

The subschema name that will be accessed by default by the MetaMap Manager programs working on this
schema.

Database Name

The CA-IDMS database name that will be accessed by default by the MetaMap Manager programs working
on this schema.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS | 62
Result

A dictionary file will be produced which represents the correct schema definition as stored in IDD.

Example

Consider the following CA-IDMS PUNCH for the schema IDMSSCHM:

ADD
SCHEMA NAME IS CUSTSCHM VERSION IS 1
MEMO DATE IS 30/07/90
ASSIGN RECORD IDS FROM 1001
.
ADD
AREA NAME IS CUST-AREA
ESTIMATED PAGES ARE 0
.
ADD
RECORD NAME IS CUSTOMER
RECORD ID IS 0611
LOCATION MODE IS CALC USING (CUST-NUMBER)
 DUPLICATES ARE NOT ALLOWED
CALL W02A0001 BEFORE STORE
CALL W02A0001 BEFORE MODIFY
WITHIN AREA CUST-AREA OFFSET 0 PERCENT FOR 100 PERCENT
.
02 CUST-NUMBER
 PICTURE IS X(10)
 USAGE IS DISPLAY
.
02 CUST-NAME
 PICTURE IS X(20)
 USAGE IS DISPLAY
.
02 CUST-CITY
 PICTURE IS X(15)
 USAGE IS DISPLAY
.
ADD
RECORD NAME IS INVOICE
RECORD ID IS 0620
LOCATION MODE IS CALC USING (INVOICE-NUMBER)
CALL W02A0001 BEFORE STORE
CALL W02A0001 BEFORE MODIFY
WITHIN AREA CUST-AREA OFFSET 0 PERCENT FOR 100 PERCENT
.
02 INVOICE-NUMBER
PICTURE IS X(10)
USAGE IS DISPLAY
.
02 INVOICE-DATE
 PICTURE IS X(10)
 USAGE IS DISPLAY
.
ADD
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS | 63
RECORD NAME IS ITEM
RECORD ID IS 0621
LOCATION MODE IS VIA INVOICE-ITEM SET
CALL W02A0001 BEFORE STORE
CALL W02A0001 BEFORE MODIFY
WITHIN AREA CUST-AREA OFFSET 0 PERCENT FOR 100 PERCENT
.
02 PRODUCT-NUMBER
 PICTURE IS X(5)
 USAGE IS DISPLAY
.
02 PRODUCT-DESCRIPTION
 PICTURE IS X(70)
 USAGE IS DISPLAY
.
ADD
RECORD NAME IS IREMARK
RECORD ID IS 0621
LOCATION MODE IS VIA INVOICE-ITEM SET
CALL W02A0001 BEFORE STORE
CALL W02A0001 BEFORE MODIFY
WITHIN AREA CUST-AREA OFFSET 0 PERCENT FOR 100 PERCENT
.
02 TEXT-REMARK
 PICTURE IS X(100)
 USAGE IS DISPLAY
.
ADD
SET NAME IS IX-CUST-NAME
ORDER IS SORTED
MODE IS INDEX USING SYM-CUST-NAME
OWNER IS SYSTEM
 WITHIN AREA CUST-AREA OFFSET 0 PERCENT FOR 100 PERCENT
MEMBER IS CUSTOMER
INDEX DBKEY POSITION IS 5
OPTIONAL MANUAL
KEY IS (
 CUST-NAME ASCENDING)
DUPLICATES ARE NOT ALLOWED
UNCOMPRESSED
.
ADD
SET NAME IS CUST-INVOICE
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS CUSTOMER
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
MEMBER IS INVOICE
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
LINKED TO OWNER
OWNER DBKEY POSITION IS 3
MANDATORY AUTOMATIC
KEY IS (
 INVOICE-NUMBER ASCENDING)
 DUPLICATES ARE NOT ALLOWED
 NATURAL SEQUENCE
.

IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS | 64
ADD
SET NAME IS INVOICE-ITEM
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS INVOICE
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
MEMBER IS ITEM
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
LINKED TO OWNER
OWNER DBKEY POSITION IS 3
OPTIONAL AUTOMATIC
KEY IS (
 PRODUCT-NUMBER ASCENDING)
 DUPLICATES ARE NOT ALLOWED
 NATURAL SEQUENCE
.
ADD
SET NAME IS INVOICE-IREMARK
ORDER IS SORTED
MODE IS CHAIN LINKED TO PRIOR
OWNER IS INVOICE
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
MEMBER IS IREMARK
NEXT DBKEY POSITION IS 1
PRIOR DBKEY POSITION IS 2
LINKED TO OWNER
OWNER DBKEY POSITION IS 3
MANDATORY AUTOMATIC
KEY IS (
 TEXT-REMARK ASCENDING)
 DUPLICATES ARE FIRST
 NATURAL SEQUENCE
.

The resulting MDL commands will be:

ADD FILE IDMSCUST TYPE IDMS SCHEMA CUSTSCHM VERSION 1 DBNAME 'CUSTSS01'
ADD RECORD CUSTOMER OF IDMSCUST SIZE 45 STORAGE-KEY CUST-NUMBER STORAGE-AREA CUST-
AREA
ADD FIELD CUST-NUMBER OF CUSTOMER POSITION 1 SIZE 10 TYPE CHARACTER
ADD FIELD CUST-NAME OF CUSTOMER POSITION 11 SIZE 20 TYPE CHARACTER
ADD FIELD CUST-CITY OF CUSTOMER POSITION 31 SIZE 15 TYPE CHARACTER
ADD RECORD INVOICE OF IDMSCUST SIZE 20 STORAGE-KEY INVOICE-NUMBER STORAGE-AREA
CUST-AREA
ADD FIELD INVOICE-NUMBER OF INVOICE POSITION 1 SIZE 10 TYPE CHARACTER
ADD FIELD INVOICE-DATE OF INVOICE POSITION 11 SIZE 10 TYPE CHARACTER
ADD RECORD ITEM OF IDMSCUST SIZE 75 STORAGE-AREA CUST-AREA
ADD FIELD PRODUCT-NUMBER OF ITEM POSITION 1 SIZE 5 TYPE CHARACTER
ADD FIELD PRODUCT-DESCRIPTION OF ITEM POSITION 6 SIZE 70 TYPE CHARACTER
ADD RECORD IREMARK OF IDMSCUST SIZE 100 STORAGE-AREA CUST-AREA
ADD FIELD TEXT-REMARK OF IREMARK POSITION 1 SIZE 100 TYPE CHARACTER
ADD INDEX IX-CUST-NAME BASED ON CUST-NAME
ADD LINK CUST-INVOICE FROM CUSTOMER TO (INVOICE)
ADD LINK INVOICE-ITEM OPTIONAL FROM INVOICE TO (ITEM)
ADD LINK INVOICE-IREMARK FROM INVOICE TO (IREMARK)
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS | 65
A.3. IDMS RECORD

When starting the Collect File functionality of the MetaStore Manager the option "IDMS Record punch"
represents a possibility to transform IDD record definitions into a MetaSuite definition.

Source information

You will first need to produce a Record punch from the CA-IDMS IDD. This can be done by the following
example JCL:
The input is an IDMS punch of your record as a result of the following example JCL for z/OS:

//RECCHEM EXEC PGM=RECSCHEM
//SYSCTL DD DSN=IDMS-SYSCTL-filename,DISP=SHR
//SYSUDUMP DD SYSOUT=R
//SYSLST DD SYSOUT=R
//SYSPCH DD SYSOUT=R
//SYSIPT DD *
SIGNON … DICTNAME IS IDMS-DatabaseName
SET OPTIONS FOR SESSION INPUT COLUMNS ARE 1 THRU 80.
 PUNCH RECORD RecordName VERSION IS VersionNumber
 WITH COBOL
 ALSO WITH DETAILS
 ALSO WITH SYNONYMS
 AS SYNTAX.

The result of this JCL will need to be transferred to your workstation, so that it is available as source for
MetaStore Manager.
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS | 66
IDMS File Information

After starting the "IDMS Record punch" collect option and selecting the IDMS Record punch, the following
window will pop up.

Result

A MetaSuite file will be produced which represents the correct file definition as stored in IDD.

Example

Consider the following IDMS Record punch

ADD
 RECORD NAME IS KX0001RS VERSION IS 1
 DESCRIPTION IS 'Control and transformation of
 date'
*+ RECORD LENGTH IS 113
 RECORD NAME SYNONYM IS KX0001RS VERSION 1
 SUFFIX IS -KX0001RS
 COMMENTS
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX A - METASTORE MANAGER COLLECT FOR CA-IDMS | 67
 ' '
 - 'Only returncode zero is ok'
 .
 02 INTERFACEELE
 USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 93
*+ POSITION IS 1
 .
 03 RECID
 PICTURE IS X(8)
 USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 8
*+ POSITION IS 1
 .
 03 RETURNCODE
 PICTURE IS X
 USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 1
*+ POSITION IS 9
 .
 03 MELDING
 PICTURE IS X(80)
 USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 80
*+ POSITION IS 10
 .
 03 STUCOD
 PICTURE IS X(04)
 USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 4
*+ POSITION IS 90
 .
 02 DATUM
 PICTURE IS X(10)
 USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 10
*+ POSITION IS 94
 .
 02 DATUMTYP
 PICTURE IS X
 USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 1
*+ POSITION IS 104
 .
 02 INDKEY
 PICTURE IS X
 USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 1
*+ POSITION IS 105
 .
 02 DATUMUIT
 PICTURE IS 9(8)
 USAGE IS DISPLAY
*+ ELEMENT LENGTH IS 8
*+ POSITION IS 106
 .
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX B

Appendix B - Sample Programs

B.1. MDL data Samples

MDL definition of IDMS-SIMULATION-CARS

DELETE FILE ALL
ADD FILE IDMS-SIMULATION-CARS TYPE IDMS SCHEMA CARSCHEM VERSION 1 DBNAME 'CARS'
ADD RECORD CAR-TYPES#30288 SIZE 24 STORAGE-AREA CARS
ADD FIELD CAR-TYPE-CODE#30290 POSITION 1 SIZE 4 TYPE ZONED UNSIGNED CODE
ADD FIELD CAR-TYPE-NAME#30291 POSITION 5 SIZE 20 TYPE CHARACTER
ADD RECORD CAR-SUBTYPES#30289 SIZE 34 STORAGE-AREA CARS
ADD FIELD CAR-SUBTYPE-MAIN-CODE#30292 POSITION 1 SIZE 4 TYPE ZONED UNSIGNED CODE
ADD FIELD CAR-SUBTYPE-SUB-CODE#30293 POSITION 5 SIZE 6 TYPE CHARACTER
ADD FIELD CAR-SUBTYPE-BUILD-YEAR#30310 POSITION 11 SIZE 4 TYPE ZONED UNSIGNED
ADD FIELD CAR-SUBTYPE-NAME#30294 POSITION 15 SIZE 20 TYPE CHARACTER
ADD INDEX CAR-IX BASED ON CAR-TYPE-CODE#30290
ADD LINK CAR-REL FROM CAR-TYPES#30288 TO (CAR-SUBTYPES#30289)

MDL definition of IDMS-SIMULATION-GARAGES

ADD FILE IDMS-SIMULATION-GARAGES TYPE IDMS SCHEMA GARSCH VERSION 1 DBNAME 'GARAGES'
ADD RECORD GARAGE-AREAS#30301 SIZE 24 STORAGE-KEY GARAGE-POSTAL-CODE#30303 STOR-
AGE-AREA GARAGES
ADD FIELD GARAGE-POSTAL-CODE#30303 POSITION 1 SIZE 4 TYPE ZONED UNSIGNED CODE
ADD FIELD GAR-COMUNITY#30304 POSITION 5 SIZE 20 TYPE ALPHABETIC
ADD RECORD GARAGE-NAMES#30302 SIZE 32 STORAGE-KEY GARAGE-POSTAL-CODE#30306 STOR-
AGE-AREA GARAGES
ADD FIELD GARAGE-POSTAL-CODE#30306 POSITION 1 SIZE 4 TYPE ZONED UNSIGNED
ADD FIELD GARAGE-CODE#30307 POSITION 5 SIZE 4 TYPE CHARACTER
ADD FIELD GARAGE-CAR-TYPE-CODE#30308 POSITION 9 SIZE 4 TYPE ZONED UNSIGNED CODE
ADD FIELD GARAGE-NAME#30309 POSITION 13 SIZE 20 TYPE CHARACTER
ADD INDEX GAR-IX BASED ON GARAGE-POSTAL-CODE#30303
ADD LINK GAR-REL FROM GARAGE-AREAS#30301 TO (GARAGE-NAMES#30302)
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX B - SAMPLE PROGRAMS | 69
B.2. Sample 1 - "Via Index"

FIELD W-CUR SIZE 4 TYPE BINARY
FIELD T01-TOVI TYPE CHARACTER SIZE 56
FIELD WK-IDMS-SIMULATION-GARAGES TYPE CHARACTER SIZE 17 INITIAL 'GARAGES' PARAME-
TER
FIELD WK-IDMS-SIMULATION-CARS TYPE CHARACTER SIZE 17 INITIAL 'CARS' PARAMETER
REMARKS Dummy WorkField for TOTAL without ACCUM Fields
FIELD SYS-DUMMY TYPE ZONED SIZE 1
REMARKS Source: IDMS-SIMULATION-GARAGES
SOURCEFILE IDMS-SIMULATION-GARAGES -
SCHEMA GARSCH VERSION 1 DBNAME WK-IDMS-SIMULATION-GARAGES -
 PATH -
 (-
 GARAGE-NAMES#30302 -
)
REMARKS Source: IDMS-SIMULATION-CARS
SOURCEFILE IDMS-SIMULATION-CARS -
SCHEMA CARSCHEM VERSION 1 DBNAME WK-IDMS-SIMULATION-CARS -
 CONTROLLED MANUAL
REMARKS REPORT 0 to write values of target groupby fields and program procedures

REPORT 0
REMARKS IDMS-TEST-OBTAIN-VIA-IX (SEQUENTIAL)

TARGETFILE 1 SEQUENTIAL
TITLE 0 ('T01-IDMS-TEST-OBTAIN-VIA-IX')
DETAIL 1 RECORD 'TOVI' -
 (-
 GARAGE-POSTAL-CODE#30306, -
 GARAGE-CODE#30307, -
 GARAGE-NAME#30309, -
 GARAGE-POSTAL-CODE#30306, -
 CAR-TYPE-CODE#30290, -
 CAR-TYPE-NAME#30291 -
)

BEGIN SOURCEFILE IDMS-SIMULATION-GARAGES INPUT
REMARKS FI1

BEGIN SOURCEFILE IDMS-SIMULATION-CARS INPUT
REMARKS FI2
CAR-SUBTYPE-MAIN-CODE#30292 SYS-RAW = GARAGE-CAR-TYPE-CODE#30308 SYS-RAW
IDMS OBTAIN FIRST CAR-SUBTYPES#30289 WITHIN CAR-REL
IDMS IF CAR-REL MEMBER
IF IDMS-SIMULATION-CARS SYS-IO-STATUS EQ SYS-NOT-RELATED -
 EXCLUDE
IDMS ACCEPT W-CUR FROM CAR-SUBTYPES#30289 CURRENCY
DEBUG 'current car-subtypes key is # ' (W-CUR)
IDMS OBTAIN OWNER WITHIN CAR-REL
IDMS IF CAR-REL MEMBER
IF IDMS-SIMULATION-CARS SYS-IO-STATUS EQ SYS-NOT-RELATED -
 DEBUG 'record excluded ' -
 EXCLUDE
IDMS ACCEPT W-CUR FROM CAR-TYPES#30288 CURRENCY
DEBUG 'current car-types key is # ' (W-CUR)
BEGIN REPORT 0 INITIAL
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX B - SAMPLE PROGRAMS | 70
SYS-APPLICATION = 'p3127a'
BEGIN REPORT 0 EOJ
Sample 2. "Controlled-by (manual)"
REMARKS SPECIAL IDMS-DBMS WORKFIELD(S)
FIELD WK-IDMS-SIMULATION-GARAGES TYPE CHARACTER SIZE 17 INITIAL 'GARAGES' PARAME-
TER
FIELD WK-IDMS-SIMULATION-CARS TYPE CHARACTER SIZE 17 INITIAL 'CARS' PARAMETER
REMARKS Dummy WorkField for TOTAL without ACCUM Fields
FIELD SYS-DUMMY TYPE ZONED SIZE 1
REMARKS Source: IDMS-SIMULATION-GARAGES
SOURCEFILE IDMS-SIMULATION-GARAGES -
SCHEMA GARSCH VERSION 1 DBNAME WK-IDMS-SIMULATION-GARAGES -
 PATH -
 (-
 GARAGE-AREAS#30301, -
 GARAGE-NAMES#30302 -
 VIA GAR-REL -
)
REMARKS Source: IDMS-SIMULATION-CARS
SOURCEFILE IDMS-SIMULATION-CARS -
SCHEMA CARSCHEM VERSION 1 DBNAME WK-IDMS-SIMULATION-CARS -
 CONTROLLED BY IDMS-SIMULATION-GARAGES -
 KEY GARAGE-CAR-TYPE-CODE#30308 -
 PATH -
 (-
 CAR-TYPES#30288 -
 VIA CAR-IX -
)
REMARKS REPORT 0 to write values of target groupby fields and program procedures

REPORT 0
REMARKS Car-Garage-report (REPORT)

REPORT 1 -
PAGE (55, 132)
TITLE 0 ('Garages and cars')
DETAIL 1 -
(-
 GARAGE-POSTAL-CODE#30303, -
 GAR-COMUNITY#30304, -
 GARAGE-POSTAL-CODE#30306, -
 GARAGE-CODE#30307, -
 GARAGE-CAR-TYPE-CODE#30308, -
 GARAGE-NAME#30309, -
 CAR-TYPE-CODE#30290, -
 CAR-TYPE-NAME#30291 -
)
BEGIN REPORT 0 INITIAL
SYS-APPLICATION = 'P3134A'
BEGIN REPORT 0 EOJ
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX B - SAMPLE PROGRAMS | 71
B.3. Sample 2 - "OBTAIN"

FIELD T01-TO-rec TYPE CHARACTER SIZE 52
FIELD WK-IDMS-SIMULATION-GARAGES TYPE CHARACTER SIZE 17 INITIAL 'GARAGES' PARAME-
TER
FIELD SYS-DUMMY TYPE ZONED SIZE 1
REMARKS Source: IDMS-SIMULATION-GARAGES
SOURCEFILE IDMS-SIMULATION-GARAGES -
SCHEMA GARSCH VERSION 1 DBNAME WK-IDMS-SIMULATION-GARAGES -
 CONTROLLED MANUAL
REMARKS No automatic file specified
SOURCEFILE SYS-DUMMY-FILE

REMARKS REPORT 0 to write values of target groupby fields and program procedures
REPORT 0
REMARKS test-obtain (HTML)
TARGETFILE 1 DELIMITED OUTPUT-CONTROL HTM
TITLE 0 ('T01-test-obtain')
DETAIL 1 RECORD 'TO-rec' -
(-
 GARAGE-CODE#30307, -
 GARAGE-CAR-TYPE-CODE#30308, -
 GARAGE-NAME#30309, -
 GARAGE-POSTAL-CODE#30303, -
 GAR-COMUNITY#30304 -
)
BEGIN SOURCEFILE IDMS-SIMULATION-GARAGES INPUT
GARAGE-POSTAL-CODE#30306 = 3118
IDMS OBTAIN GARAGE-NAMES#30302 WITHIN GAR-REL USING GARAGE-POSTAL-CODE#30306
IF IDMS-SIMULATION-GARAGES SYS-IO-STATUS EQ SYS-ERROR -
 DEBUG 'OBTAIN FIRST NOT SUCCESSFULL' -
 HALT ALL -
 EXIT
IDMS OBTAIN OWNER WITHIN GAR-REL
IF IDMS-SIMULATION-GARAGES SYS-IO-STATUS EQ SYS-ERROR -
OR IDMS-SIMULATION-GARAGES SYS-IO-STATUS EQ SYS-NOT-RELATED -
 DEBUG 'OBTAIN OWNER NOT SUCCESSFULL' -
 HALT ALL -
 EXIT
BEGIN REPORT 0 INITIAL
SYS-APPLICATION = 'P3146A'
BEGIN REPORT 0 EOJ
BEGIN TARGETFILE 1 INPUT
IF IDMS-SIMULATION-GARAGES SYS-INPUT-COUNT GT 2 -
 HALT ALL
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX B - SAMPLE PROGRAMS | 72
B.4. Sample 3 - "Controlled by work field"

REMARKS Global WorkFields without LIKE
FIELD WORK-CAR-TYPE-CODE SIZE 4 TYPE ZONED UNSIGNED
REMARKS Global WorkFields for TargetFields
FIELD T01-Cra-Garage-rec TYPE CHARACTER SIZE 114
REMARKS SPECIAL IDMS-DBMS WORKFIELD(S)
FIELD WK-IDMS-SIMULATION-GARAGES TYPE CHARACTER SIZE 17 INITIAL 'GARAGES' PARAME-
TER
FIELD WK-IDMS-SIMULATION-CARS TYPE CHARACTER SIZE 17 INITIAL 'CARS' PARAMETER
REMARKS Dummy WorkField for TOTAL without ACCUM Fields
FIELD SYS-DUMMY TYPE ZONED SIZE 1
REMARKS Source: IDMS-SIMULATION-GARAGES
SOURCEFILE IDMS-SIMULATION-GARAGES -
SCHEMA GARSCH VERSION 1 DBNAME WK-IDMS-SIMULATION-GARAGES -
 PATH -
 (-
 GARAGE-AREAS#30301, -
 GARAGE-NAMES#30302 -
 VIA GAR-REL -
)
REMARKS Source: IDMS-SIMULATION-CARS
SOURCEFILE IDMS-SIMULATION-CARS -
SCHEMA CARSCHEM VERSION 1 DBNAME WK-IDMS-SIMULATION-CARS -
 CONTROLLED BY IDMS-SIMULATION-GARAGES -
 KEY WORK-CAR-TYPE-CODE -
 PATH -
 (-
 CAR-TYPES#30288 -
 VIA CAR-IX, -
 CAR-SUBTYPES#30289 -
 VIA CAR-REL -
)
REMARKS REPORT 0 to write values of target groupby fields and program procedures

REPORT 0
REMARKS Car-Garage-report (REPORT)

REPORT 1 -
PAGE (55, 132)
TITLE 0 ('Garages and cars')
DETAIL 1 -
(-
 GARAGE-POSTAL-CODE#30303, -
 GAR-COMUNITY#30304, -
 GARAGE-POSTAL-CODE#30306, -
 GARAGE-CODE#30307, -
 GARAGE-CAR-TYPE-CODE#30308, -
 GARAGE-NAME#30309, -
 CAR-TYPE-CODE#30290, -
 CAR-TYPE-NAME#30291, -
 CAR-SUBTYPE-MAIN-CODE#30292, -
 CAR-SUBTYPE-SUB-CODE#30293, -
 CAR-SUBTYPE-BUILD-YEAR#30310, -
 CAR-SUBTYPE-NAME#30294 -
)
BEGIN SOURCEFILE IDMS-SIMULATION-GARAGES INPUT
IF GARAGE-NAMES#30302 SYS-PATH-COUNT EQ 0 -
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

APPENDIX B - SAMPLE PROGRAMS | 73
 WORK-CAR-TYPE-CODE SYS-STATUS = SYS-NULL-VALUE -
ELSE -
 WORK-CAR-TYPE-CODE = GARAGE-CAR-TYPE-CODE#30308

BEGIN REPORT 0 INITIAL
SYS-APPLICATION = 'P3161A'
BEGIN REPORT 0 EOJ
IKAN Solutions IDMS FILE ACCESS GUIDE - RELEASE 8.1.3

	IDMS File Access Guide
	Table of Contents
	About This Manual
	1.1. Prerequisites
	1.2. Related Publications

	MetaSuite File Access Overview
	CA-IDMS Concepts and Terminology
	3.1. Overview
	3.2. CA-IDMS data structures
	3.3. Records
	Location Modes
	Indexes
	Data Structure Diagram
	Sets
	Set Linkage
	Set Order
	Data Structures
	Hierarchical Structure
	Network Structure

	3.4. Accessing Information
	Integrated Data Dictionary (IDD)
	Schema
	Subschema
	Run-Unit
	Path
	Currencies

	Using MetaSuite with a CA-IDMS database
	4.1. MetaSuite and CA-IDMS Terminology
	File
	Record
	Field
	Index
	Link
	Data Definition Facilities

	4.2. Programming Overview
	CA-IDMS SourceFile path
	Extended MetaSuite Facilities
	What the Program Sees
	Multiple Databases

	Defining a CA-IDMS Database
	5.1. Overview
	5.2. Defining Databases Manually
	Commands
	MetaSuite Commands that Define CA-IDMS Data Structures

	5.3. FILE
	Format
	File-name
	Schema-name
	Schema-version
	Subschema-name
	Business-rule
	Example

	5.4. RECORD
	Format
	Usage
	Record-name
	File-name
	Maximum-record-size
	Storage-keyfield
	Area-name
	Business-rule
	Example

	5.5. INDEX
	Format
	Usage
	Index-set-name
	Index-field-name
	Example

	5.6. LINK
	Format
	Usage
	Link-name
	Owner-record
	Member-record
	OPTIONAL
	Example

	5.7. FIELD
	Format
	Usage
	Example

	Programming With MetaSuite File- Access (IDMS)
	6.1. Overview
	6.2. Programming Considerations
	Accessing the database
	Processing Sequence
	Navigating the Database
	Program commands
	Efficiency Considerations

	6.3. SourceFile
	SourceFile-name
	Prefix
	Schema Name
	Version Number
	Subschema Name
	PATH
	Identifying the Entry Record and Its Access Technique
	MetaMap correspondence
	Identifying Subordinate Records
	MetaMap correspondence
	Identifying Associated Records
	Example 1: Multiple Path
	Example 2: Bill-of-Materials Paths
	The Path Analysis Report
	Matching files
	Controlled SourceFile
	Controlled By SourceFile
	Example 1: Controlling Database Access from an External File
	Program Code
	Discussion

	Example 2: Controlling Database Access from within the Database Itself
	Problem Statement
	Program Code
	Discussion

	6.4. Procedural Commands
	Checking the Return Status

	6.5. Command Summary
	6.6. EXCLUDE
	Command Syntax
	Usage
	Bypassing Processing for a Record
	Bypassing Paths of Records
	Bypassing CONTROLLED BY Records

	6.7. EXIT
	Command Syntax
	Usage

	6.8. GET
	Command Syntax
	Usage
	Identifying the Record(s) to be Read
	Specifying the Access Key Value
	Combining SOURCEFILE and GET Command Syntax Options
	Example 1: Retrieving a CALC Record
	Example 2: Retrieving an Indexed Record
	Example 3: Retrieving a Path of Records

	6.9. HALT ALL
	Command Syntax
	Usage

	6.10. HALT SOURCEFILE
	Command Syntax
	Usage
	Identifying the SourceFile(s) to Be Halted

	6.11. ACCEPT FROM CURRENCY
	Command Syntax
	Usage

	6.12. IDMS ACCEPT FROM SET
	Command Syntax
	Usage

	6.13. RELEASE
	Command Syntax
	Usage

	6.14. START
	Command Syntax
	Usage
	Identifying the Record or Subschema
	Specifying the Starting Position

	MetaSuite CA-IDMS DML Commands
	7.1. Overview
	7.2. Checking the Return Status
	7.3. Command Summary
	7.4. ACCEPT FROM CURRENCY
	Command Syntax
	Usage
	Identifying the GlobalField for the Db-key
	Requesting the Db-key of the Current Record
	Specifying a Record Name
	Specifying a Set Name

	7.5. ACCEPT FROM SET
	Command Syntax
	Usage
	Identifying the GlobalField for the Db-key
	Identifying the Set
	Specifying the Record

	7.6. IF MEMBER
	Command Syntax
	Usage
	Testing a Record for Set Membership
	Testing a Set for Member Records

	7.7. OBTAIN DB-KEY IS
	Command Syntax
	Usage
	Specifying a Record Name
	Identifying the GlobalField for the Db-key

	7.8. OBTAIN CURRENT WITHIN SET
	Command Syntax
	Usage
	Requesting the Current Record for a Subschema
	Specifying a Record Name
	Specifying a Set Name

	7.9. OBTAIN WITHIN SET
	Command Syntax
	Usage
	Specifying the Relative Record to Obtain
	Specifying a Record Name
	Specifying the Set

	7.10. OBTAIN WITHIN AREA
	Command Syntax
	Usage
	Specifying the Relative Record to Obtain
	Specifying a Record Name
	Specifying the Area

	7.11. OBTAIN OWNER WITHIN SET
	Command Syntax
	Usage
	Specifying a Set Name

	7.12. OBTAIN RECORD-NAME
	Command Syntax
	Usage
	Specifying Which Record to Obtain
	Specifying a Record Name

	7.13. OBTAIN WITHIN SET USING SORT KEY
	Command Syntax
	Usage
	Specifying a Record Name
	Specifying a Set Name
	Specifying the Sort-Key Value

	7.14. RELEASE
	Command Syntax
	Usage

	Appendix A - MetaStore Manager Collect for CA-IDMS
	A.1. Overview
	MetaSuite and CA-IDMS Terms

	A.2. IDMS SCHEMA
	Source information
	IDMS File Information
	File Name
	Subschema Name
	Database Name
	Result
	Example

	A.3. IDMS RECORD
	Source information
	IDMS File Information
	Result
	Example

	Appendix B - Sample Programs
	B.1. MDL data Samples
	MDL definition of IDMS-SIMULATION-CARS
	MDL definition of IDMS-SIMULATION-GARAGES

	B.2. Sample 1 - "Via Index"
	B.3. Sample 2 - "OBTAIN"
	B.4. Sample 3 - "Controlled by work field"

