
IMS DL/I File Access Guide

Release 8.1.3
November 2013

IKAN Solutions N.V.
Kardinaal Mercierplein 2
B-2800 Mechelen
BELGIUM

Copyright © 2013, IKAN Solutions N.V.

No part of this document may be reproduced or transmitted in any form or by any
means, electronically or mechanically, for any purpose, without the express written
permission of IKAN Solutions N.V.

MetaSuite, MetaStore Manager, MetaMap Manager and Generator Manager are
trademarks of IKAN Solutions N.V.
IMS is a trademark of International Business Machines.

Table of Contents

Chapter 1 - About This Manual... 1
1.1. Prerequisites ...1

1.2. Related Publications ...1

Chapter 2 - Introduction ... 3

Chapter 3 - IMS (DL/I) Database Management System....................................... 4
3.1. MetaSuite and IMS Terminology..4

Segment ..4
Parent-Child Relationship ..5
DataBase Definition (DBD) ..5
Program Specification Block (PSB) ...5
Program Control Block (PCB) ..5
Index ..5

Chapter 4 - Defining an IMS Database to MetaSuite.. 6
4.1. Overview...6

4.2. Commands..6

4.3. FILE ...7

Format ..7
Usage..7
File-name ..8
File-version..8
PCB-name...8
Business-rule ...8
Example 1: IMS Database Definition ...8
Example 2: IMS Database Definition..8

4.4. RECORD ...9

Format ..9
Usage..9
Record-name ..9
File-name ..9
Maximum-record-size ...9
Storage-keyfield ...10
IMS-Name...10
Business-rule ...10
Example ..10
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

TABLE OF CONTENTS | ii
4.5. INDEX ...11

Format ..11
Usage..11
Index-set-name...11
Index-field-name...12
Example ..12

4.6. FIELD ..13

Format ..13
Usage..13
Start-value...14
Characters...14
TYPE field-type ...14
IMS-name..14

Example ..14

Chapter 5 - Programming With File Access for IMS.. 16
5.1. Overview...16

5.2. Programming Considerations...16

Accessing the database..16
Processing Sequence..17
Navigating the Database..17
Program commands ...17

5.3. SourceFile ..17

SourceFile-name ...17
Prefix ..18
PATH ..18

Path Records ..18

Associated Records ..18

Identifying the Entry Record and Its Access Technique...19
Identifying Subordinate Records ..19
Identifying Associated Records ..19
Example 1: Single path...19
Example 2: VIA Index-name Path ...20
Example 3: Associated record..20
Example 4: Multiple Paths ..21
Matching files ...21
Controlled SourceFile ..21
Controlled By SourceFile ...22
Example 1: Controlled By...22

Program Code ..22

Discussion...23

Example 2: Controlled by with Foreign Key...24
Program Code ..24

Discussion...24

5.4. Procedural Commands ..25

5.5. Command Summary ...25
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

TABLE OF CONTENTS | iii
5.6. EXCLUDE ...25

Command Syntax ...25
Usage..25

Basic Example...25

Bypassing an individual path ..26
Example..26

Bypassing Unwanted Paths and Subordinate Records...26
Example..27

Bypassing CONTROLLED BY Records ...27
Example..27

5.7. GET ..28

Command Syntax ...28
Usage..28

Identifying the Record(s) to be Read..28
Specifying the Access Key Value ..29
Combining SOURCEFILE and GET Command Syntax Options ...29

Example 1: Retrieving Random of a record ...29

Example 2: Retrieving an Indexed Record ...29

Example 3: Retrieving a Path of Records ...30

5.8. START ..30

Command Syntax ...30
Usage..30
Identifying the Record or Subschema ..30
Specifying the Starting Position ...30

Example..31
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

CHAPTER 1

About This Manual

The MetaSuite file access for IMS describes the use of MetaSuite with IMS database files. In the VSE/AF
operating system environment, users commonly refer to the IMS system as "DL/I". Since the IMS and DL/I
systems differ only (with minor exceptions) in the Operating System in which they execute, we will refer only
to "IMS" in this supplement.
This supplement is intended for users with some experience with MetaSuite. It provides the information you
need to use the MetaSuite IMS Database File Access, including discussions on IMS concepts, defining an
IMS database for use with MetaSuite and using MetaSuite commands to access IMS databases.
Because most MetaSuite commands are independent of the environment in which MetaSuite operates, only
those commands that pertain to IMS database definition and access are described in this supplement. The
MetaSuite User and Reference Guides are the primary sources of information about MetaSuite.

1.1. Prerequisites
Readers are expected to be familiar with IMS.

1.2. Related Publications
The MetaSuite User and Reference Guides describe the different MetaSuite components and provide
examples for using MetaSuite. Those guides should be available for reference during the installation and test
procedures described here.
The following table gives an overview of the complete MetaSuite documentation set.

Release Information Release Notes 8.1.3

Installation Guides • BS2000/OSD Runtime Component
• DOS/VSE Runtime Component
• Fujitsu Windows Runtime Component
• MicroFocus Windows Runtime Component
• MicroFocus UNIX Runtime Component
• OS/390 and Z/OS Runtime Component
• OS/400 Runtime Component
• VisualAge Windows Runtime Component
• VisualAge UNIX Runtime Component
• VMS Runtime Component
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

ABOUT THIS MANUAL | 2
If you are unfamiliar with MetaSuite, the following technical description provides you with a brief overview.

User Guides • INI Manager User Guide
• Installation and Setup Guide
• Introduction Guide
• MetaStore Manager User Guide
• MetaMap Manager User Guide
• Generator Manager User Guide

Technical Guides • ADABAS File Access Guide
• IDMS File Access Guide
• IMS DLI File Access Guide
• RDBMS File Access Guide
• XML File Access Guide
• Runtime Modules
• User-defined Functions User Guide

The MetaSuite System MetaSuite is designed for data retrieval, extraction, conversion and
reporting. It includes a workstation-based graphical user interface and
a mainframe runtime component.

MetaSuite Database Interfaces MetaSuite can access data from a number of database management
systems, using the same commands, program structure and retrieval
techniques used for non-database files. Each database interface is
available as an optional enhancement to the base product.

MetaMap Manager MetaMap Manager is the MetaSuite tool used to define models. Such
models are intuitively built by describing overall program
specifications, input file definitions (data and process) and target file
definitions (data and process).

MetaStore Manager MetaStore Manager is a tool that provides metadata maintenance and
documentation services.

Generator Manager The Generator Manager is the system administration tool.All kinds of
basic functionalities and customization possibilities are supported by
this tool.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

CHAPTER 2

Introduction

Because most MetaSuite commands are independent of the environment in which MetaSuite operates, only
those commands that pertain to an IMS database definition and access are described in this supplement.
Additional chapters in this guide include:

• IMS (DL/I) Database Management System (page 4)

• Defining an IMS Database to MetaSuite (page 6)

• Programming With File Access for IMS (page 16)
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

CHAPTER 3

IMS (DL/I) Database Management
System

IMS is the database management system (DBMS) distributed by the IBM Corporation for the z/OS
operating system environment. It supports the MetaSuite database concepts of field, record, link, and index,
although the link and index concepts are mostly hidden from the view of the application programmer. There is
no concept in IMS, which corresponds precisely to the MetaSuite file concept, so each separate IMS
application view of a database ("Program Control Block" or "PCB" in IMS jargon) is treated as a single
MetaSuite file.
This chapter presents an overview of the IMS concepts and terms you should know before using MetaSuite to
access an IMS.

3.1. MetaSuite and IMS Terminology
All MetaSuite File Access components use the same terminology when referring to data structures. The
MetaSuite terminology, though, may differ from that of an individual DBMS. The relationships between the
basic MetaSuite and IMS terms are as follows:
MetaSuite and IMS Terms

The MetaSuite terms are described separately below, along with their IMS correspondences.

Segment
The basic unit of data storage in an IMS database is an IMS segment. A segment is a collection of related data
items, or fields. There can be many segments in a database, each with its own definition.
In MetaSuite file access for IMS:

• An IMS segment is defined and referred to as a RECORD.

MetaSuite IMS

File IMS PCB

Record IMS Segment

Field Field

Index IMS Index
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

IMS (DL/I) DATABASE MANAGEMENT SYSTEM | 5
Parent-Child Relationship
The IMS parent-child relationship describes a single relationship between two specific segment types. There
are two important restrictions to a parent-child relationship, in comparison with a common relationship:

• IMS, at any one time, allows only a single relationship between two specific segment types to be used.

• A parent-child relationship can be traversed only in the parent-to-child direction. Thus, a reference to a
child segment in an application program unambiguously identifies both the segment type and the
relationship type.

Consequently, parent-child relationships cannot be specified in the application program, so they are neither
defined in the MetaStore.

DataBase Definition (DBD)
The Data Base Definition (DBD) is a data module describing an entire IMS database to the DBMS. It
includes descriptions of all the entities stored in the database, specifications of the physical datasets used to
hold the various entities, and the access methods that will be used by the DBMS. The process of generating a
DBD is referred to as a DBDGEN.
The DBDGEN listing will be a useful source of information when defining IMS databases to the MetaStore.

Program Specification Block (PSB)
An IMS Program Specification Block (PSB) is a data module that serves a particular application, and defines
which portions of the physical database can be used by that program, and how the program will view the data.
The PSB-name must be specified in the JCL used to execute MetaSuite-generated IMS programs. The
process of generating a PSB is referred to as a PSBGEN. The listing created by a PSBGEN, will be a useful
source of information when defining IMS databases to the MetaStore.

Program Control Block (PCB)
Each PSB consists of one or more Program Control Blocks (PCBs). Each PCB presents a logical view of the
database, and determines which segments and relationships are available for use.
As noted above, there are restrictions on the actual combinations of segments and parent-child relationships
that may be accessed through a specific PCB:

• there may be only one parent-child relationship between any two segments in the PCB

• they form a strict hierarchy from the first parent segment (called the "root" segment) to all dependent
segment types

In MetaSuite file access for IMS:

• An IMS PCB is defined and referred to as a FILE.

Index
Each IMS index is actually an IMS database, called an "index database". The segments in an index database
are not accessed by a MetaSuite application, but are used instead by the DBMS to control the sequence in
which the other database segments are accessed. The index database is "invisible" to the application program.
There are, however, two important restrictions on the use of IMS indexes:

• Only a single index may be used in any given PCB

• An index must be based on the root segment of the PCB
In MetaSuite file access for IMS:

• An IMS index is defined and referred to as an INDEX.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

CHAPTER 4

Defining an IMS Database to
MetaSuite

4.1. Overview
This chapter describes how to provide MetaSuite with access to the definitions that it needs to process data in
an IMS database.
Note that the descriptions in this chapter use both the MetaSuite and IMS terminology for data entities, as
appropriate. The correspondences between the MetaSuite and IMS terminology are discussed in detail in IMS
(DL/I) Database Management System (page 4). These correspondences are summarized in the following
table.

Before you begin to define database or non-database files to the MetaStore, you must locate the appropriate
sources of information about those files. In the case of IMS, the source documents which provide the
information necessary to define files, records, indexes, and fields to MetaStore are the DBDGEN and
PSBGEN job source listings. There will be several different PSBGEN jobs, because each PSB has been set up
for a specific application. Refer only to the PSB, which you will be using with your MetaSuite generated
program.
The definition of the MetaSuite IMS file, records and fields can be automated when you have a COBOL
Copy Book or PL/I Include Book that describes the segment layout of those segments that you want to group
in one file. This COBOL Copy Book or PL/I Include Book can be used by the Collect File option in the
MetaStore Manager to create the proper base definition of the IMS segments in MDL format. Refer to the
MetaStore Manager User Guide for more information.

4.2. Commands
The following table lists the MetaSuite Commands used to manually code IMS data definitions.

MetaSuite IMS

File IMS PCB

Record IMS Segment

Field Field

Index IMS Index
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

DEFINING AN IMS DATABASE TO METASUITE | 7
Each command is described separately below.

4.3. FILE
The ADD FILE command defines an IMS file to the MetaStore. The general syntax for the ADD FILE
command is described in the MetaMap Manager User Guide. The options that refer to IMS are described
below.
The ADD FILE command will describe all segments within an IMS PCB.

Format

ADD FILE File-name
 [VERSION File-version]
 TYPE IMS
 'PCB-name'
 [RULE Business-rule]

Usage
The ADD FILE command defines an IMS file to the MetaStore.
You can find the information you need to code on the ADD FILE command in the PSBGEN which will be
used when accessing the file in a MetaSuite generated program.
Each PCB defined in a PSBGEN job will be identified by the following statement:

PCBname PCB TYPE=DB,DBDNAME=DBname,KEYLEN=len

PCBname may not be specified in the PSBGEN, or it may be spelled the same as a PCB name in another
PSBGEN. In either of those cases, you will need to use a different name for file-name. Note that you must
make sure that the DBDGEN job, which you are using, defines the same DBD as specified in the DBDname
parameter of the PCB statement in the PSBGEN.
The name of the PSB in the PSBGEN job can be found at the end of the job by the indication:

PSBNAME=PSB-name

You can use the Collect File option in the MetaStore Manager to generate the IMS file definition from a
COBOL Copy Book or a PL/I Include Book.

Command Used to define

ADD FILE An IMS PCB

ADD RECORD An IMS segment

ADD FIELD An IMS field

ADD INDEX An IMS index
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

DEFINING AN IMS DATABASE TO METASUITE | 8
File-name
Required. File-name is an arbitrary name of up to 32 characters, although it is suggested that the PCB name
be used. It can include alphabetic characters, numbers, the embedded characters #, @, $, embedded hyphens
and embedded underscores. It must begin with an alphabetic character.

File-version
Optional. The VERSION option specifies the version-number of a file.

PCB-name
Required. PCB-name is the name of the PCB as found in the PSBGEN.

Business-rule
Optional. The RULE option is used to add a business rule documenting your file.

Example 1: IMS Database Definition
An IMS customer database is to be defined to the MetaStore. After examining the DBDGEN and PSBGEN
listings for this database, it is determined that the PSB that we are interested in is named "PSB1". All of the
PCBs from this PSB will be defined as MetaSuite files. The applicable statements from our PSBGEN listing
are as follows:

DEMOPCB1 PCB TYPE=DB,DBDNAME=DEMODBD1,KEYLEN=17
.
DEMOPCB2 PCB TYPE=DB,DBDNAME=DEMODBD1,KEYLEN=27,
 PROCSEQ=DEMOINDX
.
PSBGEN LANG=COBOL,PSBNAME=PSB1,CMPAT=NO

Using the PSBGEN statement shown above, the MetaSuite ADD FILE commands required for our example
database would be as follows:

ADD FILE DEMOPCB1 TYPE IMS 'DEMOPCB1'
ADD FILE DEMOPCB2 TYPE IMS DBNAME 'DEMOPCB2'

Example 2: IMS Database Definition
The applicable statements from our PSBGEN listing are as follows:

DEMOPCB1 PCB TYPE=DB,DBDNAME=DEMODBD1,KEYLEN=17
.
DEMOPCB2 PCB TYPE=DB,DBDNAME=DEMODBD1,KEYLEN=27,
 PROCSEQ=DEMOINDX
.
PSBGEN LANG=COBOL,PSBNAME=PSB1,CMPAT=YES

Using the PSBGEN statement shown above, the MetaSuite ADD FILE commands required for our example
database would be as follows:

ADD FILE DEMOPCB1 TYPE IMS DBNAME 'DEMOPCB1'
ADD FILE DEMOPCB2 TYPE IMS DBNAME 'DEMOPCB2'
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

DEFINING AN IMS DATABASE TO METASUITE | 9
4.4. RECORD
IMS database segments are defined to the MetaStore using the ADD RECORD command. The general
syntax for the ADD RECORD command is described in the MetaMap Manager User Guide. The syntax of the
ADD RECORD command when used to define IMS database segments includes additional options
necessary for database processing, and is described below.

Format

ADD RECORD Record-name [OF File-name]
 SIZE maximum-record-size
 [STORAGE-KEY storage-keyfield]
 DBNAME 'IMS-name'
 [RULE Business-rule]

Usage
The ADD RECORD command defines an IMS database segment to the MetaStore.
You can find the information you need to code on the ADD RECORD command in both the DBDGEN,
and the PSBGEN.
The following illustrates the format of the DBDGEN segment definition statement:

SEGM NAME=segname,PARENT=parent,BYTES=size
 FIELD NAME=(Field-name,SEQ,U),BYTES=fieldsize

The following illustrates the format of the PSBGEN segment definition statement:

SENSEG NAME=segname,PARENT=parent

You can use Collect File option in the MetaStore Manager to generate the base IMS record definition from a
COBOL Copy Book or a PL/I Include Book. You will still need to compare the following characteristics
within the MetaSuite MetaStore with the information in the DBDGEN and the PSBGEN:

• Add the DBNAME to the record

• Compare the record size with the size on the DBDGEN. You should modify the record size to the segment
size on the DBDGEN if different.

• Add the STORAGE-KEY to the record

Record-name
Required. Record-name is an arbitrary name of up to 32 characters. You can use the name of the segment as
specified in the DBD and PSBGENs.

File-name
Optional. File-name is the name of the file to which the record belongs. If this option is omitted, the record is
defined within the current file; that is, within the file named on the most recent ADD FILE statement in the
command stream.

Maximum-record-size
Required. Maximum-record-size is the record size. The record size should simply be specified as the value of
the BYTES parameter of the SEGM statement in the DBDGEN job. The number specified for the record
size need not be exact, but must be at least as large as the actual record size.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

DEFINING AN IMS DATABASE TO METASUITE | 10
Specifying a record size, which is too small for the actual record will cause unpredictable processing results.

Storage-keyfield
Optional. Storage-keyfield is the name of the field, by which you can randomly obtain the record. This option
must be specified for any record whose DBDGEN definition includes a field with the "SEQ" attribute. You
can determine if this is the case by examining the DBDGEN statements for the record being defined. If one of
the FIELD statements, following the SEGM statement for the record in question, appears as follows:

FIELD NAME=(IMS-field,SEQ,U),START=position

, then this is the storage key for the record.
At this point, you must choose a MetaSuite field-name for this field, and specify that name as the storage-
keyfield of the STORAGE-KEY option entered on the ADD RECORD command. Later, you will define
that field within the MetaSuite record using the same field-name you have selected, and the value shown for
IMS-field in the DBDGEN statement must be specified as the internal database name (DBNAME) for that
field. (See "Field" later.)

IMS-Name
Required. IMS-Name must be set to the segment name of the record, as specified in the DBDGEN and
PSBGEN statements.

Business-rule
Optional. The RULE option is used to add a business rule documenting your record.

Example
To continue our customer database example, assume that we want to add four record definitions to the
MetaSuite MetaStore for the PCBs DEMOPCB1 and DEMOPCB2. The first step would be to examine the
DBDGEN and PSBGEN jobs. The applicable statements from the DBDGEN job would appear as follows:

SEGM NAME=CUSTOMER,PARENT=0,BYTES=104
 FIELD NAME=(CUSTNUM,SEQ,U),BYTES=10,...
.
SEGM NAME=INVOICE,PARENT=CUSTOMER,BYTES=40
FIELD NAME=(ORDNUM,SEQ,U),BYTES=7,...
.
SEGM NAME=OREMARK,PARENT=INVOICE,BYTES=72
.
SEGM NAME=ITEM,PARENT=INVOICE,BYTES=3226

The applicable statements from the PSBGEN job would appear as follows:

DEMOPCB1 PCB TYPE=DB,DBDNAME=DEMODBD1,KEYLEN=17
 SENSEG NAME=CUSTOMER,PARENT=0
 INDICES=DEMOINDX,PROCOPT=G
 SENSEG NAME=INVOICE,PARENT=CUSTOMER,PROCOPT=G
 SENSEG NAME=OREMARK,PARENT=INVOICE,PROCOPT=G
 SENSEG NAME=ITEM,PARENT=INVOICE,PROCOPT=G
DEMOPCB2 PCB TYPE=DB,DBDNAME=DEMODBD1,KEYLEN=27
 PROCSEQ=DEMOINDX
 SENSEG NAME=CUSTOMER,PARENT=0,PROCOPT=G
 SENSEG NAME=INVOICE,PARENT=CUSTOMER,PROCOPT=G
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

DEFINING AN IMS DATABASE TO METASUITE | 11
Using the DBDGEN and PSBGEN statements shown above, the ADD RECORD commands would be
coded as follows:

ADD RECORD CUST-PCB1 OF DEMOPCB1 SIZE 104 STORAGE-KEY CUST-NUMBER DBNAME 'CUSTOMER'
ADD RECORD CUST-PCB2 OF DEMOPCB2 SIZE 104 STORAGE-KEY CUST-NUMBER DBNAME 'CUSTOMER'
ADD RECORD INV-PCB1 OF DEMOPCB1 SIZE 40 STORAGE-KEY ORDER-NUMBER DBNAME 'INVOICE'
ADD RECORD INV-PCB2 OF DEMOPCB2 SIZE 40 STORAGE-KEY ORDER-NUMBER DBNAME 'INVOICE'
ADD RECORD OREMARK OF DEMOPCB1 SIZE 72 DBNAME 'OREMARK'
ADD RECORD ITEM OF DEMOPCB1 SIZE 3226 DBNAME 'ITEM'

The IMS-names and sizes are determined from the DBDGEN statements. The breakdown of which records
are available through which PCBs is taken from the PSB statements. Note that we have chosen the MetaSuite
names CUST-NUMBER and ORDER-NUMBER for the IMS fields CUSTNUM and ORDNUM,
respectively. The IMS field names will be specified as the internal database names when we define these
MetaSuite fields later. (See "Field" later.)

4.5. INDEX
You should define MetaSuite indexes:

• Whenever the database is an indexed database (HISAM, HIDAM, etc.),

• Whenever the database has secondary indexes defined.
The ADD INDEX command is used to define those indexes. The syntax and usage of this command is
described below.

Format

ADD INDEX index-set-name BASED ON index-field-name

Usage
The ADD INDEX command defines an IMS primary or secondary index to the MetaSuite MetaStore. You
can find the information you need to code on the ADD INDEX command in the DBDGEN.
The following illustrates the format of the DBDGEN statement:

DBD NAME=DBDname,ACCESS=HISAM
SEGM NAME= segname,PARENT=parent,BYTES=size
FIELD NAME=(Field-name,SEQ,U),...
FIELD NAME=Field-name,...
.
LCHILD NAME=(index-DBDname1),PTR=INDX
 XDFLD NAME=index-name,SRCH=Field-name

An IMS index always needs to be added manually to the MetaSuite MetaStore. Its definition can not be
generated by the Collect File option in the MetaStore Manager.

Index-set-name
Required. Index-set-name is the name by which MetaSuite users would refer to the index. It may be any unique
name, although it is suggested that the name of the index database (index-DBDname) be used.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

DEFINING AN IMS DATABASE TO METASUITE | 12
Index-field-name
Required. Index-field-name is the MetaSuite field-name of the field from which the indexed values are drawn.
The IMS field names will be specified as the internal database names when we define these MetaSuite fields
later. (See "Field" later.)

Example
In our DBDGEN job, the sample database is defined as follows:

DBD NAME=DEMODBD1,ACCESS=HISAM
SEGM NAME=CUSTOMER,PARENT=0,BYTES=104
FIELD NAME=(CUSTNUM,SEQ,U),...
FIELD NAME=CUSTNAME,...
.
LCHILD NAME=(CUSTINDX,CNAMINDX),PTR=INDX
 XDFLD NAME=CUSTNAMX,SRCH=CUSTNAME

In addition, an index database is defined as follows:

DBD NAME=CNAMINDX,ACCESS=INDEX
DATASET ...
SEGM NAME=CNAMXSEG,BYTES=...
FIELD NAME=(CNAMIX1,SEQ,U),...
LCHILD NAME=(CUSTOMER,DEMODBD1),INDEX=CUSTNAMX
DBDGEN
FINISH

Finally, the definitions of the PCBs in our PSBGEN listing contain the following statements:

DEMOPCB1 PCB TYPE=DB,DBDNAME=DEMODBD1,KEYLEN=17
.
DEMOPCB2 PCB TYPE=DB,DBDNAME=DEMODBD1,KEYLEN=27,
 PROCSEQ=CNAMINDX,PROCOPT=G

By inspecting the main database DBDGEN statements, we see that two indexes may be defined. Since the
DBD ACCESS statement specifies HISAM, we will define an index (the "primary index") based on the key
field of the root segment (CUSTNUM in the CUSTOMER segment). Because the DBDGEN also contains
an XDFLD statement, we know that there is a secondary index. The segment accessed by the index (called the
"target segment" in IMS jargon) is also the CUSTOMER segment, and the index-field through which the
index is accessed is the XDFLD (CUSTNAMX). The definitions for these indexes are as follows:

ADD INDEX CNUMINDX BASED ON CUST-NUMBER
ADD INDEX CNAMINDX BASED ON CUST-NAME

Note that CUST-NUMBER and CUST-NAME are MetaSuite field-names.
When these fields are defined, they will be defined with the DBNAME option. The DBNAME for CUST-
NUMBER must be the name shown on the FIELD statement in the DBDGEN (CUSTNUM). The
DBNAME for CUST-NAME must be the name shown on the XDFLD statement in the DBDGEN
(CUSTNAME). Note also that the ADD FIELD commands to define these fields must precede the ADD
INDEX commands when they are imported in the MetaStore Manager. Once these indexes are defined to the
MetaSuite MetaStore, then the full range of index-based functions (index-sequential processing, START
processing, etc.) may be used by the MetaSuite application programs.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

DEFINING AN IMS DATABASE TO METASUITE | 13
4.6. FIELD
The ADD FIELD command is used to define all database fields. The general syntax is described in the
MetaMap Manager User Guide. Only IMS specific characteristics are described in this supplement.

Format

ADD FIELD field-name [OF { record | group-field }]
 [POSITION start-value]
 [SIZE characters]
 [OCCURS number-times
 [DEPENDING ON depend-field]]
 [TYPE { CHARACTER |
 BIT number |
 FLOAT |
 BINARY [DECIMAL places] |
 PACKED [DECIMAL places] [UNSIGNED] |
 ZONED [DECIMAL places]
 [UNSIGNED | [SEPARATE] LEADING]] }]
 [DATE 'format']
 [EDIT 'mask']
 [INITIAL value]
 [LIMITS (minimum TO maximum)]
 [DBNAME 'IMS-name']
 [RULE Business-rule]

Usage
The ADD FIELD command defines an IMS segment field.
The syntax is identical to that described in the MetaMap Manager User Guide, with one exception: every field
which is named as the STORAGE-KEY of a database record, and every field which is named as the BASED
ON field of a database index, must be defined with the DBNAME option.
The discussion of the ADD FIELD command which follows includes only those options for which special
considerations apply when defining IMS fields to the MetaSuite MetaStore. Note that many fields available in
an IMS record will not be defined in the DBDGEN job. Typically, a few large group-fields will be defined
with FIELD statements in the DBDGEN job, and the fine structure (the individual fields) will be defined
only in the application programs. Consequently, you will need to consult with your systems staff to locate
descriptions of most of the fields available in your database - the DBDGEN and PSBGEN jobs will provide
only descriptions of the key fields and the large group-fields.
Note also, that various kinds of IMS "field-level sensitivity" may impact the appearance of the records returned
by the DBMS. If the PSBGEN job contains SENSEG statements which specify PROCOPT=K, then only
the key fields of those records may be defined to the MetaSuite MetaStore. Likewise, if the PSBGEN job
contains SENSEG statements which are followed by SENFLD statements, then only the fields defined by the
SENFLD statements may be defined to the MetaSuite MetaStore. The following discussions assume that no
PSBGEN SENSEG...PROCOPT=K or SENFLD statements are present, and therefore, the DBDGEN
definitions of the IMS fields may be used.

• You can use the Collect File option in the MetaStore Manager to generate the base IMS field definition
from a COBOL Copy Book or a PL/I Include Book. You will still need to add the DBNAME to the fields
that are used as storage-keys on index fields within the MetaSuite MetaStore.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

DEFINING AN IMS DATABASE TO METASUITE | 14
Start-value
If the field is defined in the DBDGEN job, then the value of the START parameter on the FIELD statement
in that job is used for start-value, and the record would be specified (OF record). If the field is not defined in
the DBDGEN job (i.e., it is a subfield defined only in the application programs which access the database),
then you must use the normal rules shown in the MetaMap Manager User Guide to determine field position (
OF group-field).

Characters
If the field is defined in the DBDGEN job, the value of the BYTES parameter in the FIELD statement in
that job is used for characters. If the field is not defined in the DBDGEN job, you must use the normal rules to
determine field size.

TYPE field-type
If the field is defined in the DBDGEN job, field-type may be determined from the DBDGEN TYPE option
of the FIELD statement as follows:

If the field is not defined in the DBDGEN job, you must use the normal rules for determining field type.

IMS-name
The DBNAME parameter is required only for fields, which will be defined either as record STORAGE-KEY
fields or as index BASED ON fields. When the field is defined as a STORAGE-KEY or when it is defined as
the BASED ON field of the primary index for the database, IMS-name must be the same as the value of the
NAME parameter on the FIELD statement in the DBDGEN which defines the field. In the case of
secondary indexes, the field is known to IMS by two names contained in the DBDGEN: once on a FIELD
statement and once on an XDFLD statement. You will use the FIELD statement to obtain all the information
about a secondary index field except the DBNAME. For a secondary index field, the IMS-name you specify
must be taken from the XDFLD statement.

Example
Continuing the definition of our example DEMODBD1 database, we will show the field definitions for all of
the STORAGE-KEY fields and INDEX base-fields, plus a few others. The applicable fields from the
DBDGEN job would be as follows:

SEGM NAME=CUSTOMER,PARENT=0,BYTES=104
FIELD NAME=(CUSTNUM,SEQ,U),BYTES=10,START=1,TYPE=X
FIELD NAME=CUSTNAME,BYTES=20,START=11,TYPE=X
.
LCHILD NAME=(CNAMINDX),PTR=INDX

This DBDGEN Type Is Equivalent to This MetaSuite Type . . .

X Could be any type.

P PACKED

C CHARACTER or ZONED

F BINARY

H BINARY
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

DEFINING AN IMS DATABASE TO METASUITE | 15
XDFLD NAME=CUSTNAMX,SRCH=CUSTNAME
.
SEGM NAME=INVOICE,PARENT=CUSTOMER,BYTES=40
FIELD NAME=(ORDNUM,SEQ,U),BYTES=7,START=1,TYPE=P
FIELD NAME=ORDCPON,BYTES=10,START=8,TYPE=X
.
SEGM NAME=ORMARK,PARENT=INVOICE,BYTES=72
FIELD NAME=OREMSEQ,BYTES=2,START=1,TYPE=H
FIELD NAME=OREMTEXT,BYTES=70,START=3,TYPE=C
.

Using the DBDGEN statement shown above, the MetaSuite ADD FIELD commands would be coded as
follows:

ADD FIELD CUST-NUMBER POSITION 1 SIZE 10 DBNAME 'CUSTNUM'
ADD FIELD ORD-NUMBER POSITION 1 SIZE 7 TYPE PACKED DBNAME 'ORDNUM'
ADD FIELD ORD-CUST-PO-NUMB POSITION 8 SIZE 10 TYPE MIXED
ADD FIELD REMARK-SEQ POSITION 1 SIZE 2 TYPE BINARY
ADD FIELD REMARK-TEXT POSITION 3 SIZE 70 TYPE CHARACTER

Note the definition of DBNAME values for the various storage-key and index base-fields.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

CHAPTER 5

Programming With File Access for
IMS

5.1. Overview
This chapter describes how to use the MetaMap Manager commands that access information stored in an
IMS database.

• Data source commands define the SourceFile, ExternalArray and GlobalFieldobjects to be used during the
program processing. For IMS SourceFiles,the SourceFilePath can specify how the IMS records need to be
accessedwithin the SourceFile.

• TargetFile objects define the output you want to generate.

• Procedural commands define the processing you want to occur, if any.
These program sections are described in detail in the MetaSuite User and Reference Guides.
The SourceFile objects may differ in use with an IMS SourceFile than with a non-database SourceFile.
Target objects are unaffected by access to an IMS SourceFile.
Note that the descriptions in this chapter use the MetaSuite terminology exclusively. The correspondences
between the MetaSuite and the IMS terminology are discussed in detail in Defining an IMS Database to
MetaSuite (page 6). These correspondences are summarized in the following table.
MetaSuite Commands that Define IMS Data Structures

5.2. Programming Considerations
When coding a program that accesses an IMS database, you should be aware of the considerations below.

Accessing the database
In general, you access an IMS database as you would access a non-database SourceFile.
You define a PCB within a PSB through a SourceFile and a SourceFilePath object, whose options define
whether the database is to be accessed automatically by MetaSuite or through your procedural code.

Command Used to define

ADD FILE An IMS PCB

ADD RECORD An IMS segment

ADD FIELD An IMS field

ADD INDEX An IMS index
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 17
Processing Sequence
You must be aware of the processing sequence of a MetaSuite program, to avoid issuing a database command
when no successful access is possible. For example, assume you try to access the IMS database from a
SourceFile initial procedure for another SourceFile. The access request will be unsuccessful, unless you have
already specified the SOURCEFILE command for the database, because the database has not yet been
opened. See the "Order of Execution" topic in the MetaMap Manager User Guide for information about
program processing sequence.

Navigating the Database
There are many ways to access an IMS database, some more efficient than others. If efficiency is a
consideration, consult your systems staff for assistance.

Program commands
The MetaMap Manager commands and most procedural commands are unaffected by the use of IMS
database SourceFiles. Refer to the MetaMap Manager User Guide for the syntax of these commands.
The following MetaSuite commands differ in their use with IMS databases, they are discussed in this chapter:

SOURCEFILE EXCLUDE
GET START

5.3. SourceFile
The options of the SourceFile objects are different for automatic, controlled and controlled by SourceFiles:
Automatic SourceFile object:

SOURCEFILE SourceFile-name [PREFIX 'prefix']
PATH (entry-record [VIA index-name]
 [{,subordinate-record VIA related-record
 [OCCURS number times]} …])
[MATCH (match-key,…)]

Controlled SourceFile object:

SOURCEFILE SourceFile-name [PREFIX 'prefix']
CONTROLLED
PATH (entry-record [VIA index-name]
 [{,subordinate-record VIA related-record
 [OCCURS number times]} …])

Controlled By SourceFile object:

SOURCEFILE SourceFile-name [PREFIX 'prefix']
CONTROLLED BY controlling-SourceFile KEY = key-field
PATH (entry-record [VIA index-name]
 [{,subordinate-record VIA related-record
 [OCCURS number times]} …])

Each option is described separately on the following pages.

SourceFile-name
Names a SourceFile that has been defined to the MetaSuite MetaStore. Remember that a MetaSuite IMS file
is usually assigned the name of an IMS PCB.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 18
Prefix
Prefix is exactly four characters, including alphabetic characters, numbers, and embedded hyphens, beginning
with an alphabetic character.
The PREFIX option allows the same definitions to be used in multiple SourceFile objects. Note that each
reference to an object within the SourceFile will be prefixed with the Prefix.

PATH

PATH (entry-record [VIA index-name]
 [{,subordinate-record VIA related-record
 [OCCURS number-times]}...])

The PATH option is part of the SOURCEFILE command. It is mandatory for all IMS SourceFiles. The
PATH option is used to simplify the processing of a database by allowing the user to view data from multiple
record types as a single unit of data. This process of collecting data from multiple records to be treated as a
single unit of data is sometimes called "file flattening". The PATH option identifies the record types to be
processed, and expresses the relationships between the records in hierarchical terms. The records named in the
path specification are said to be either "path records" or "associated records".

Path Records

A "path" is a continuous hierarchical route through the records of the database. For example, we might define
a path through our example database as beginning at the CUSTOMER record, proceeding to the INVOICE
record, and finally to the ITEM record. The system would process this path by obtaining the first
CUSTOMER record in the database, the first INVOICE record for that CUSTOMER, and the first ITEM
record for that INVOICE. This collection of data would then be available to the MetaSuite program
procedures as the first path of data. The system would then attempt to obtain another ITEM record for the
same INVOICE and, if successful, would return the new ITEM record along with the old INVOICE and
CUSTOMER records as the next path of data. This process continues until there are no more ITEM records
for the first INVOICE, at which point the system will obtain the next INVOICE record for the first
CUSTOMER along with its first ITEM record.
Similarly, when there are no more INVOICE records for the first CUSTOMER, the next CUSTOMER
record will be obtained and the processing of its INVOICE and ITEM records will continue as described
above. Note that each successive record named in the MetaSuite path must be a "dependent" of the record
named previously in the path. The parent/child relationships used in determining dependency are those
specified in the PSBGEN job for the PCB in question. A given PCB may specify a different set of parent/
child relationships than another given PCB, so it is important to be aware of the definition of the actual PCB
in use.

Associated Records

It is sometimes necessary to process records which are related to a path record, but which do not directly
participate in the hierarchy. Using the same CUSTOMER, INVOICE, ITEM path described above, assume
that we would like to access information from the first five invoice remarks (INV-REMARK) records for each
order. The INV-REMARK record would be defined in the MetaSuite path specification as an "associated
record" of the INVOICE record. The system would process the main CUSTOMER, INVOICE, ITEM path
as described above, but each time a new INVOICE record was obtained, up to five INV-REMARK records
associated with that INVOICE record would also be obtained. Note that the user has the option of requesting
either a single occurrence or multiple occurrences of an associated record in the path. Again, each associated
record in a path must be the dependent of the previous path record. In summary, all associated record types are
related to path records, but do not participate in a hierarchical path.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 19
Identifying the Entry Record and Its Access Technique

Entry-record [VIA index-name]

Required. Entry-record is the highest level record in the path hierarchy, the record at which the navigation
through the database begins.
Without the VIA option, the entry-record can be any record defined in the SourceFile. Traversal through the
database will be based on this record type.
With the VIA option, certain conditions must apply:
The Entry-record must be the "root segment" as defined in the PCB in use.

• The PCB must have been defined in the PSBGEN job with the PROCSEQ parameter, naming an index
database as the processing sequence. Index-name must be the name of the index specified in the
PROCSEQ parameter.

• When the above two conditions are true, the entry records will be retrieved in index sequence. The VIA
option is needed only if you intend to use the START or GET commands within your MetaSuite program.

Identifying Subordinate Records

subordinate-record VIA related-record

Optional. Subordinate-record names a dependent record in the database, as defined by the PCB in use. Because
each PCB may define a different hierarchy in the database, it is important to check the PCB definition in the
PSBGEN job to determine which records are dependents of each other. Up to 15 subordinate records may be
specified following the entry record.
The VIA option explicitly names the relationship between the subordinate record and some other previously
named record in the path specification. Related-record names a previous record in the path.

Identifying Associated Records

OCCURS number-times

The OCCURS option is used to indicate that a record is to be an associated record. Number-times may be in
the range of 1 to 32,767 that indicates the number of occurrences of the record you want to retrieve.

Example 1: Single path

SOURCEFILE DEMOPCB1
PATH (CUSTOMER, INVOICE VIA CUSTOMER)

The SourceFile will retrieve CUSTOMER records from the database in sequential order. Each CUSTOMER
will appear several times in the SourceFile path, each time with another of its related INVOICE records. A
report containing only the following detail line:

DETAIL 1 (CUST-NUMBER SHORT, INVOICE-NUMBER)

would print the following:

CUST INVOICE
NUMBER NUMBER
********** *******
1620921286 SC20221
 SC20344
 SC20401
2153522440 SC41532
 SC43456
2248374765 SC10293
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 20
Example 2: VIA Index-name Path

SOURCEFILE DEMOPCB2
 PATH (CUSTOMER VIA CNAMINDX
 ,INVOICE VIA CUSTOMER)

The SourceFile will return the same information as the first example. As in the first example, the information
obtained from the IMS segments will be grouped by customer, thanks to the Path construction. However, in
this example, the customer records will be accessed in sequence by name. If the program reports required the
data to be sorted in customer name order, accessing this IMS SourceFile through an Index, would eliminate
the need for either a SourceFile or TargetFile sort.

Example 3: Associated record

SOURCEFILE DEMOPCB1
 PATH (INVOICE
 ,INV-REMARK VIA INVOICE OCCURS 5,
 ,ITEM VIA INVOICE)

In the path specification, the INV-REMARK records are associated with the INVOICE records by specifying
the OCCURS option. In the event that there are fewer than five INV-REMARK records for a particular
INVOICE, the system field INV-REMARK SYS-PATH-COUNT will indicate the number actually present.
Refer to the MetaMap Manager User Guide for a description of the use of the SYS-PATH-COUNT system
field.
The PATH command in this example will cause the system to construct a path that will allow for one
INVOICE record, five INV-REMARK records, and one ITEM record. The first input path will contain the
first INVOICE record stored in the database, the first five of its INV-REMARK records, and its first ITEM
record. The next input path will contain the same INVOICE and INV-REMARK data, and the next ITEM
record for the first INVOICE. This continues until there are no more ITEM records for the first INVOICE,
at which point the next INVOICE record, its first five INV-REMARK records, and the first ITEM record for
that INVOICE will be obtained.
The system will continue to construct paths in this way until the end of the INVOICE record chain in the
database. Note that all of the SourceFiles shown in the examples thus far would have appeared in the
MetaSuite Program listing with the Path Analysis Report, which is produced by the MetaSuite Generator.
The Path Analysis Report produced for this example file would be as follows:

PATH PATH RECORDS ASSOCIATED RECORDS
**** ************ ********************
1 INVOICE INV-REMARK(01 TO 05)
 ITEM

This Path Analysis Report shows that successive input paths will contain the hierarchy: INVOICE, ITEM. It
also shows that up to five INV-REMARK records will be available for each INVOICE in the path. Note that
whenever multiple occurrences of a record are specified, any references to the fields within those records must
be have a subscript in order to identify the record occurrence desired.
For example, if it were desired to access a field named INV-REMARK-SEQ in the third occurrence of the
associated INV-REMARK record, the reference would be coded:

INV-REMARK-SEQ (3) or INV-REMARK-SEQ (X)

where X is a numeric field having the value 3.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 21
Example 4: Multiple Paths

SOURCEFILE DEMOPCB1
 PATH (INVOICE
 , INV-REMARK VIA INVOICE
 , ITEM VIA INVOICE)

In the SourceFile, the INV-REMARK record is implicitly related to the INVOICE record, forming the first
path, and the ITEM record is explicitly related to INVOICE, forming the second path. The path analysis
report for this file would be as follows:

PATH PATH RECORDS ASSOCIATED RECORDS
**** ************ ******************
1 INVOICE
 INV-REMARK
2 INVOICE
 ITEM

During execution, this path will always contain an INVOICE record. It may contain a new occurrence of
either an INV-REMARK record or an ITEM record, but not a new occurrence of both. The system fields
INV-REMARK SYS-PATH-COUNT and ITEM SYS-PATH-COUNT indicate which (if either) is
present. Note that for a given occurrence of the INVOICE record, all of its INV-REMARK records will be
returned before any of its ITEM records.
A program that prints INVOICE-NUMBER, INV-REMARK-SEQ, and ITEM-PROD-NUMBER values
for this path only when those values change, would produce the following output:

 INV ITEM
INVOICE REMARK PROD
NUMBER SEQ NUMBER
******* ****** ********
SC20221 01
 CCC11111
 DDD22222
 DDD22255
SC41533 01
 02
 03
 CCC11144
 DDD22222

Matching files

MATCH (match-key,…)

Match processing functions exactly as described for the SourceFiles in the MetaMap Manager User Guide.
Note that the MATCH option can only be specified for Automatic SourceFiles, and should not be used with
either the CONTROLLED or CONTROLLED BY options.

Controlled SourceFile

CONTROLLED

The CONTROLLED option indicates that access to the database is to be controlled using the MetaSuite
GET command. Automatic, sequential access to the file will not be performed when the CONTROLLED
option is specified.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 22
When a CONTROLLED SourceFile is used, after each GET command you should check the SourceFile
SYS-IO-STATUS, to detect whether the access has been successful. For information about the use of the SYS-
IO-STATUS field, refer to the MetaMap Manager User Guide.
The success or failure of a GET command may also be determined by inspecting another system field named
SourceFile SYS-INTERNAL-STATUS. In fact, the contents of this system field may be inspected at any time in
a MetaSuite application. It contains the IMS status code returned from the last call to the database
management system. It will be a 2-character field. The possible values for this system field are documented in
IBM's IMS/VS Application Programming: Designing and Coding manual. The GET command examples below
will alternate in the use of the SYS-IO-STATUS and the SYS-INTERNAL-STATUS fields.
A discussion of IMS considerations when using the GET command follows.

Controlled By SourceFile

CONTROLLED BY SourceFile-name KEY = control-key

The CONTROLLED BY option indicates that the records on one SourceFile will be accessed based on the
information stored on, or derived from, another (controlling) SourceFile. SourceFile-name is the name of the
(other) controlling SourceFile. Control-key is either a field on the controlling SourceFile or a GlobalField
whose value is determined in the SourceFile input procedure for the controlling SourceFile.
When doing controlled retrieval using the CONTROLLED BY option, one SourceFile is read automatically
(the controlling SourceFile), and the records are retrieved from another SourceFile (the controlled SourceFile)
according to the control-key. The composite record, referred to as a controlled set, is built consisting of records
from both SourceFiles, and this composite record (controlled set) can then be used just as you would any single
record.
The Initial SourceFile procedure for the CONTROLLED BY SourceFile cannot include commands that
require a second pass: i.e., the Initial SourceFile procedure cannot request a SORT, EXTRACT, or PRE-
PASS.
The SOURCEFILE command for the controlling SourceFile (controlling-SourceFile-name) must come before
the SOURCEFILE command for the controlled SourceFile in the program. Also, the controlling SourceFile
cannot itself be CONTROLLED, although it can be CONTROLLED BY another SourceFile. (You can nest
CONTROLLED BY specifications up to a maximum of 20 SourceFiles).
The path of the controlling SourceFile must define a single path.

Note: If control-key is a field on the controlling SourceFile, the named field must be the lowest level of the
SourceFile path hierarchy; that is, it must be the last non-occurs record defined for the path, or an
OCCURS 1 record defined following the last non-occurs record.

Example 1: Controlled By
Assume that we have a file called CUSTOMER-CONTROL, which contains CUSTOMER-NUMBER-
CONTROL values. We have another file, DEMOPCB1, (the DEMOPCB1 database file) that contains
CUSTOMER, INVOICE and ITEM records. The CUSTOMER record STORAGE-KEY is the
CUSTOMER-NUMBER. We want to write a program that prints the 1993 order information for customers
specified in the control file.

Program Code

SOURCEFILE CUSTOMER-CONTROL
SOURCEFILE DEMOPCB1 CONTROLLED BY CUSTOMER-CONTROL
 KEY = CUSTOMER-NUMBER-CONTROL
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 23
 PATH (CUSTOMER, INVOICE VIA CUSTOMER,
ITEM VIA INVOICE)
REPORT 1
.
BEGIN RECORD INVOICE INPUT
IF INVOICE-PLACE-DATE LT 930101 EXCLUDE
BEGIN REPORT 1 INPUT
IF CUSTOMER SYS-PATH-COUNT EQ 0 -
 PUT (bad control-key value detail line) -
 EXIT
IF INVOICE SYS-PATH-COUNT EQ 0 -
 PUT (no invoice data detail line) -
 EXIT
IF ITEM SYS-PATH-COUNT EQ 0 -
 PUT (no item data detail line) -
 EXIT
PUT (full data detail-line)

Discussion

The CUSTOMER-CONTROL SourceFile will be read sequentially. The DEMOPCB1 SourceFile will be
entered using direct access, and successive paths will be filled using sequential access.
The controlled sets available for report processing would be as follows:

CONTROL CUSTOMER INVOICE ITEM
1620921286 1620921286 SC20221 CCC11111
 DDD22221
 DDD222255
 SC20344 CCC11233

 All INVOICE and ITEM data for
 CUSTOMER 1620921286. If there
 were more CUSTOMER records with
 the same key value, they would
 follow with all their INVOICE
 and ITEM data.

2248374765 2248374765 SC41532 CCC22244

Note: The CUSTOMER-CONTROL records could be in any sequence; they do not need to be sorted. The
Record Input procedure uses the EXCLUDE command to eliminate any non-1993 invoice data, and
all other controlled sets are passed to report processing. The use of EXCLUDE speeds up
processing, such that no ITEM records are accessed for an excluded INVOICE record.

The REPORT INPUT procedure checks for four conditions:

• missing CUSTOMER record (meaning that the CUSTOMER-CONTROL data did not correspond to
an actual database record),

• missing INVOICE record (which occurs for a customer with no stored invoice information),

• missing ITEM record (which occurs for an invoice with no line-times -- probably an exception condition),

• complete information.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 24
Example 2: Controlled by with Foreign Key
The second example shows the use of the CONTROLLED BY clause to process the "foreign key" stored in a
data record. Let us assume for this example that the INVOICE record in the DEMOPCB1 database file is
stored with a field called INVOICE-WRITTEN-BY, which holds a copy of the IMS storage key of a
SALESPERSON record. INVOICE-WRITTEN-BY is the foreign key. We want to produce a report listing
all customers and their invoices, along with the name of the salesperson who wrote each invoice. We want to
process only those invoices written by salespeople in sales region 03.

Program Code

SOURCEFILE DEMOPCB1 PATH (CUSTOMER, INVOICE VIA CUSTOMER)
SOURCEFILE DEMOPCB1 PREFIX 'WRT-'
 CONTROLLED BY DEMOPCB1 KEY = ORDER-WRITTEN-BY
 PATH (WRT-SALESPERSON)
REPORT 1
.
BEGIN SOURCEFILE WRT-DEMOPCB1 INPUT
IF WRT-SALES-REGION NE 03 -
 EXCLUDE DEMOPCB1
IF INVOICE SYS-PATH-COUNT EQ 0 -
 PUT (no invoice data detail line) -
 EXIT
IF WRT-SALESPERSON SYS-PATH-COUNT EQ 0 -
 PUT (no salesperson data detail line) -
 EXIT
PUT (full data detail-line)

Discussion

The WRT-DEMOPCB1 SourceFile Input procedure checks the SALES-REGION value in the
SALESPERSON record, and if it is not the desired region, it excludes the higher level SourceFile. This will
cause the higher level SourceFile processing to retrieve the next INVOICE records, which in turn will cause
the lower-level SourceFile processing to retrieve a new SALESPERSON record. Processing time will be
improved because no controlled sets will be built for the unwanted sales regions. The REPORT INPUT
procedure checks for three conditions:

1. missing INVOICE record (which occurs for a customer with no stored invoice information),

2. missing SALESPERSON record (which means that the ORDER-WRITTEN-BY information is
incorrect -- probably an exception condition),

3. complete information.

Note: The procedural code looks exactly the same as it would if there were a link between INVOICE and
SALESPERSON (and they were specified together in the PATH clause). The report output would also
look exactly the same as if the records were related by a link.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 25
5.4. Procedural Commands
Procedural commands tell MetaSuite what, if any, special processing is to be performed. Procedural code for a
program that accesses an IMS database can include any of the procedural commands described in MetaMap
Manager User Guide Guide. In certain cases, these commands differ in their use with IMS SourceFiles, as
described below.

5.5. Command Summary
The MetaSuite commands used to access an IMS database are summarized below, then discussed individually:

5.6. EXCLUDE
The following describes the EXCLUDE command and its use in accessing IMS databases.

Command Syntax

EXCLUDE [record-name | SourceFile-name]

Usage
If the SourceFile path contains multiple records, then the EXCLUDE command when used within a Record
Input procedure allows you to bypass the accessing and processing of lower-level records in a path hierarchy,
and to bypass the building of unwanted paths. As a slightly less efficient alternative, the EXCLUDE
command can be used within a SourceFile Input procedure with the record-name option.
If the SourceFile is CONTROLLED BY, when an EXCLUDE command with the SourceFile-name option is
executed, the generated program will skip all records in the controlled set from the named SourceFile down,
and will build a new set of controlled records starting with the excluded SourceFile-name.
Use of the EXCLUDE command in any of the ways mentioned above will improve processing time because
the overhead of accessing unwanted records and constructing unwanted sets of records is eliminated.

Basic Example

The discussions below refer to the following statements, and paths that could be built:

SOURCEFILE WIDGET-SALES-DB
PATH (CUSTOMER, BILL-TRANS VIA CUSTOMER)
REPORT 1
DETAIL 1 (CUSTOMER-NUMBER SHORT, BILL-NUMBER)

This Command... Is Used to...

EXCLUDE Bypass processing of the current record and exit from the current procedure. You
can exclude the current record (no subordinate records will be retrieved), the
current path, or the current path from a controlling SourceFile.

GET Read records from the database.

START Position a SourceFile at a particular record before beginning access.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 26
The following report (with the path number shown to the right) might be produced:

CUSTOMER BILL
NUMBER NUMBER
******** ******* (path number)
123 6 204 2948 33 (1)
 2993 27 (2)
 3842 46 (3)
206 3 412 3384 77 (4)
 3746 83 (5)
 4216 72 (6)
299 4 301 2981 92 (7)
 1293 09 (8)
303 3 009 3736 62 (9)

Nine paths were constructed from the thirteen records which were accessed (four CUSTOMERs and nine
BILL-TRANSs).

Bypassing an individual path
To avoid reading unwanted subordinate records, and bypass building of unwanted paths, use the EXCLUDE
command in a Record Input procedure. There can be one Record Input procedure for each record named in a
path. When a record is accessed, the Record Input procedure for that record (if you've coded one) is processed
before any additional records are accessed for that path. If the record is excluded, no records that are
subordinate to the excluded record are accessed.
Syntax and use of the REPORT INPUT procedure is described in the MetaMap Manager User Guide. Briefly,
a Record Input procedure is processed whenever the named record is accessed, before the completed path is
processed by the SourceFile or TargetFile procedure. A Record Input procedure is coded immediately
following any SourceFile procedures for the SourceFile to which the record is defined. A Record Input
procedure begins as follows:

BEGIN RECORD record-name INPUT

Example

Given the basic example and paths above: to select (in the most efficient way) only customers with account
numbers beginning with the digit 2, you might add the following code to the basic example:

BEGIN RECORD CUSTOMER INPUT
IF CUSTOMER-NUMBER NI (2000000 TO 2999999) EXCLUDE

The produced report would contain only the information shown in paths 4, 5, 6, 7, and 8. In the case of paths
1 and 9, the CUSTOMER record only would be accessed; since it is excluded in a Record Input procedure (for
that record), no BILL-TRANS records are accessed for those customers. Paths 2 and 3 are never built. This is
efficient because the least possible number of records have been accessed and the least possible number of
paths have been built.
The same report results could have been obtained by using that same IF command in a TargetFile or
SourceFile Input procedure. However, all records shown in the basic example would have been accessed and all
paths built. This is dramatically less efficient than using a Record Input procedure for the same processing.

Bypassing Unwanted Paths and Subordinate Records

record-name
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 27
To bypass the building of unwanted paths, which are based on information in a completed path, use the
EXCLUDE record-name command in a SourceFile Input procedure. The current path will be excluded, and no
more paths will be built for the excluded record. The difference between this technique and excluding the
record in a Record Input procedure is that in the latter, the path is not completed if the record is excluded (i.e.,
no subordinate records are read), while in the former the path is completed before the exclusion. In both cases,
no further paths are built for the excluded record.

Example

Given the basic example and paths above: to select (in the most efficient way) only customers with account
numbers beginning with the digit 2, you might add the following code to the basic example:

BEGIN SOURCEFILE WIDGET-SALES-DB INPUT
IF CUSTOMER-NUMBER NI (2000000 TO 2999999)-
EXCLUDE CUSTOMER

As in the previous example, the report produced would contain only the information shown in paths 4, 5, 6, 7,
and 8, and paths 2 and 3 would not be built. Paths 1 and 9 would be built completely, with both CUSTOMER
and BILL-TRANS records accessed, and then excluded. This is less efficient than using a Record Input
procedure to bypass paths because in paths 1 and 9 the BILL-TRANS record is accessed unnecessarily.

Bypassing CONTROLLED BY Records

SourceFile-name

EXCLUDE SourceFile-name is applicable only in SourceFile Input procedures. The SourceFile-name option is
used when one SourceFile is Controlled by another SourceFile, to identify the controlling SourceFile data in
which you are no longer interested. SourceFile-name must be the name of a controlling SourceFile (defined
through the CONTROLLED BY option for the SOURCEFILE command).

Example

Assume that a program contained the following statements:

SOURCEFILE DEMOPCB1
PATH (CUSTOMER, INVOICE VIA CUSTOMER)
SOURCEFILE DEMOPCB1 PREFIX 'WRT-'
CONTROLLED BY DEMOPCB1 KEY = ORDER-WRITTEN-BY
PATH (WRT-SALESPERSON)

REPORT 1
DETAIL 1 (CUSTOMER-NUMBER SHORT, INVOICE-NUMBER, -
 WRT-SALES-REGION, WRT-SALESPERSON)

The following report (with the path number shown to the right) might be produced:

CUST INVOICE WRT WRT
NUMBER NUMBER SALESPERSON (set-
*********** ******* *********** number)
1620921286 SC20221 JONES (1)
 SC20344 BLACK (2)
 SC39374 REYES (3)
2073849495 SC49483 CHANG (4)
 SC25342 SMITH (5)
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 28
 SC47365 KELLY (6)
2994301234 SC36254 GABLE (7)
 SC41092 HERON (8)
3033009281 SC20982 HAMON (9)

Nine controlled sets were constructed from the 22 IMS database records that were accessed (four
CUSTOMERs, nine INVOICEs and nine WRT-SALESPERSONs). If you wanted to process salespersons
from the southwest region only, you would add the following procedural commands to the program:

BEGIN SOURCEFILE WRT-DEMOPCB1 INPUT
IF WRT-SALES-REGION NE 03 -
 EXCLUDE DEMOPCB1

The WRT-DEMOPCB1 SourceFile Input procedure checks the SALES-REGION value in the
SALESPERSON record, and if it is not the desired region, it excludes the higher level SourceFile. This will
cause the higher level SourceFile processing to retrieve the next INVOICE record, which in turn will cause the
lower-level SourceFile processing to retrieve a new SALESPERSON record.
This facility allows you to exclude unwanted controlled sets based on data in any portion of the controlled set.
The report output would consist of the same as the above except that it would include only the sales persons
from region 3.

5.7. GET
The following describes the GET command and its use in accessing IMS databases.

Command Syntax

GET {record-name | SourceFile-name}
 [KEY = keyfield-value]

Usage
The GET command is used to read records in an IMS database from within procedural code.
Except as described below, the options of the GET command, when used with an IMS database, are the same
as for non-database SourceFiles.
Note that the success or failure of a GET command can be determined by inspecting the contents of the
system field named SourceFile SYS-IO-STATUS. For information about the use of the SYS-IO-STATUS field,
refer to the MetaMap Manager User Guide. The success or failure of a GET command may also be determined
by inspecting another system field named SourceFile SYS-INTERNAL-STATUS. In fact, the contents of
this system field may be inspected at any time in a MetaSuite application. It contains the IMS status code
returned from the last call to the database management system. It will be a 2-character field. The possible
values for this field are documented in IBM's IMS/VS Application Programming: Designing and Coding manual.
The GET command examples below will alternate in the use of the SYS-IO-STATUS and the SYS-
INTERNAL-STATUS fields.
A discussion of IMS considerations when using the GET command follows.

Identifying the Record(s) to be Read

{record-name | SourceFile-name}

Required. You must specify either the SourceFile-name or the entry record name from the SourceFilePath.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 29
Specifying the Access Key Value

KEY = keyfield-value

Optional. The KEY option specifies that MetaSuite is to retrieve the record(s) based on a keyfield value.
Keyfield-value must be a literal or the name of a field of the same general data type (alphanumeric or numeric)
as the access keyfield of the record to be obtained.
If the GET command names a record, the record must either have a storage-key or must be an indexed record.
If the GET command names a SourceFile, the entry record in the SourceFilePath must have a storage-key or
must be an indexed record. In the case of an indexed entry record, the VIA option must be included in the
PATH specification, to name the index. Keyfield-value is the Storage-key or index-field-name value, as
appropriate.

Combining SOURCEFILE and GET Command Syntax Options
The processing performed by MetaSuite for a GET command depends on the combination of GET command
options specified for the IMS SourceFile being accessed, as summarized below.

Example 1: Retrieving Random of a record

SOURCEFILE DEMOPCB1 CONTROLLED
 PATH (CUSTOMER)
.
GET CUSTOMER KEY = '2903837698'
IF DEMOPCB1 SYS-IO-STATUS EQ SYS-ERROR -
 CUST-NAME = 'NOT FOUND'

In this example, the GET command will retrieve the CUSTOMER record using the specified storage-key
value. Note that the CUSTOMER record was defined to the MetaSuite MetaStore with CUST-NUMBER, a
10-character alphanumeric field, specified as the storage-keyfield. Note also that, in the event that the
CUSTOMER record with the desired storage-key is not found in the database, the name will print out as
'NOT FOUND'.

Example 2: Retrieving an Indexed Record

SOURCEFILE DEMOPCB2 PATH (CUSTOMER VIA CNAMINDX)
.
GET CUSTOMER KEY = 'HUDSON RIVER SPRINGS'
IF DEMOPCB2 SYS-INTERNAL-STATUS EQ 'GE' -
 CUST-NAME = 'NOT FOUND'

GET KEY VIA Index GET retrieves...

NO NO The next occurrence of the entry record, as stored in the database. The
path is refilled.

NO YES The next occurrence of the entry record in index set sequence. The path
is refilled.

YES NO The (CALC) entry record occurrence containing the specified key value
in its storage-keyfield. The path is refilled.

YES YES The entry record occurrence containing the specified key value in its
index-name-field. The path is refilled.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 30
In this case, the CUSTOMER record will be accessed using the index-keyfield, CUST-NAME. Again, if the
CUSTOMER record is not found, the name will print out as 'NOT FOUND'.

Example 3: Retrieving a Path of Records

SOURCEFILE DEMOPCB1 CONTROLLED
 PATH (CUSTOMER, INVOICE VIA CUSTOMEROCCURS 10)
.
GET CUSTOMER KEY = '2903837698'
IF DEMOPCB1 SYS-IO-STATUS EQ SYS-ERROR -
 CUST-NAME = 'NOT FOUND'

In this example, the same entry record will be obtained as was obtained in the first example, but in addition, up
to 10 INVOICE records (beginning with the first) for the desired customer will be obtained. The number of
INVOICE records actually obtained can be determined by examining the contents of the system field
INVOICE SYS-PATH-COUNT.

5.8. START
The following describes the START command and its use in accessing IMS databases.

Command Syntax

START {record-name | SourceFile-name}
KEY = start-key

Usage
The START command is used to begin database access at a particular indexed record, by specifying a value for
the index-field-name for the record. In this way, you can bypass the preceding records in the index.
Be aware that it is very easy to put your program into an infinite loop through improper use of the START
command. See the discussion of the START command in the MetaMap Manager User Guide for more on this.

Identifying the Record or Subschema

{record-name | SourceFile-name}

Required. SourceFile-name or the entry record name from the SourceFilePath may be specified. The entry for
the SourceFile being started must be the entry record for the PCB in use, must be indexed and include the
VIA index-name option, to name the index you want to use.

Specifying the Starting Position

KEY = start-key

Required. The KEY option specifies the index key value less than or equal to the key value of the first record to
be processed. Start-key may be either a literal or the name of a field of the same general data type
(alphanumeric or numeric) as the index-field-name for the index to be used.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

PROGRAMMING WITH FILE ACCESS FOR IMS | 31
Example

Assume that it is desired to access all customers in our sample database whose company name begins with the
letter "S". The following program could be coded:

SOURCEFILE DEMOPCB2
 PATH (CUSTOMER VIA CNAMINDX, INVOICE VIA CUSTOMER)
REPORT 1
DETAIL 1 (CUST-NAME SHORT, INVOICE-NUMBER)
BEGIN SOURCEFILE DEMOPCB2 INITIAL
START CUSTOMER KEY = 'S'
BEGIN SOURCEFILE DEMOPCB2 INPUT
IF CUST-NAME GE 'T' HALT SOURCEFILE
EXCLUDE

The report would access and list only those customers whose name begins with the letter "S". By coding the
START command in the Initial SourceFile procedure, the database is "positioned" at the first CUSTOMER
record meeting the START criteria. The IF command in the SourceFile Input procedure halts processing
when the first CUSTOMER whose name does not begin with "S" is encountered.
IKAN Solutions IMS DL/I FILE ACCESS GUIDE- RELEASE 8.1.3

	IMS DL/I File Access Guide
	Table of Contents
	About This Manual
	1.1. Prerequisites
	1.2. Related Publications

	Introduction
	IMS (DL/I) Database Management System
	3.1. MetaSuite and IMS Terminology
	Segment
	Parent-Child Relationship
	DataBase Definition (DBD)
	Program Specification Block (PSB)
	Program Control Block (PCB)
	Index

	Defining an IMS Database to MetaSuite
	4.1. Overview
	4.2. Commands
	4.3. FILE
	Format
	Usage
	File-name
	File-version
	PCB-name
	Business-rule
	Example 1: IMS Database Definition
	Example 2: IMS Database Definition

	4.4. RECORD
	Format
	Usage
	Record-name
	File-name
	Maximum-record-size
	Storage-keyfield
	IMS-Name
	Business-rule
	Example

	4.5. INDEX
	Format
	Usage
	Index-set-name
	Index-field-name
	Example

	4.6. FIELD
	Format
	Usage
	Start-value
	Characters
	TYPE field-type
	IMS-name
	Example

	Programming With File Access for IMS
	5.1. Overview
	5.2. Programming Considerations
	Accessing the database
	Processing Sequence
	Navigating the Database
	Program commands

	5.3. SourceFile
	SourceFile-name
	Prefix
	PATH
	Path Records
	Associated Records

	Identifying the Entry Record and Its Access Technique
	Identifying Subordinate Records
	Identifying Associated Records
	Example 1: Single path
	Example 2: VIA Index-name Path
	Example 3: Associated record
	Example 4: Multiple Paths
	Matching files
	Controlled SourceFile
	Controlled By SourceFile
	Example 1: Controlled By
	Program Code
	Discussion

	Example 2: Controlled by with Foreign Key
	Program Code
	Discussion

	5.4. Procedural Commands
	5.5. Command Summary
	5.6. EXCLUDE
	Command Syntax
	Usage
	Basic Example

	Bypassing an individual path
	Example

	Bypassing Unwanted Paths and Subordinate Records
	Example

	Bypassing CONTROLLED BY Records
	Example

	5.7. GET
	Command Syntax
	Usage
	Identifying the Record(s) to be Read
	Specifying the Access Key Value
	Combining SOURCEFILE and GET Command Syntax Options
	Example 1: Retrieving Random of a record
	Example 2: Retrieving an Indexed Record
	Example 3: Retrieving a Path of Records

	5.8. START
	Command Syntax
	Usage
	Identifying the Record or Subschema
	Specifying the Starting Position
	Example

